
30 September - October 2018

In Part 1 of this article series, we described how a data
replication engine could be switched with another replication
engine that is a different version of the current engine or is

in fact one from a different vendor without taking an outage. We
call this zero downtime migration (ZDM). In Part 2, we showed how
this migration could be improved by adding one or two additional
nodes. We also discussed the unique considerations when using
bidirectional replication. In this Part 3, we look at switching
replication engines without missing or re-replicating any data.

Solving the Jagged Edge Problem When Switching
Replication Engines

The so-called jagged edge problem occurs when switching
from one replication engine to another. It may also occur when
upgrading the replication engine version, if this aspect of the
replication engine has been changed across versions. It is
especially important when the original and new data replication
engines are from different vendors, as they will each have their
own algorithms for managing the data to be replicated. To
properly resolve this issue, a thorough understanding of how
transactionally-based engines replicate data is needed, along with
reviewing various algorithms that resolve the issue, based on the
type of engine that is being replaced.

Jagged Edge and Audit Trail Background
Figure 18 repeats an earlier figure (from Part 1 of this article

series), but now we delve into the details of switching over, for
example, from v6100 to v6400 of the data replication engine,
where the new replication engine catches up to the proper point
where the switch-over occurred, without missing or repeat-
replicating any data, or causing the target database to roll back to
its original version.

Figure 18 – v6100 to v6400 Switch-Over

The approach used to switch over from one replication
engine to the other depends on the method each individual
replication engine uses when it replicates, with the most important
consideration being the method the original replication engine
uses to track its restart point. The new data replication engine
must adapt accordingly. Although other methods are also in use,
we now discuss two common methods, and how properly to switch
over when each is in use: The Brute Force Replication Method and
The Transactional Replication Method.

For this discussion, assume that the “Target Backup Database”
in Figure 18 represents the actual complete target database – the
changes for a specific file/table (or individual partition in an HPE
NonStop system) are replicated by either v6100 or v6400, but not
both. In Figure 19, the audit trail represents the log of all changes
made to the source database; these database changes are applied
by all of the applications on the source environment. Although the
audit trail may be comprised of multiple separate log files (e.g., a
MAT sequence of log files along with one or more AUX sequences
of log files on an HPE NonStop), it can be processed as a singular
and sequential listing/queue of the change events across all
f iles and tables in “roughly” ascending time order.1 Note that
the landed/received order prevails if it differs slightly from the
assigned chronological order of each event in the aggregated trail.

Processing the audit trail in sequential/landed order yields
a stream of transactional activity that has occurred against the
source database. For any individual file/table (or partition on an
HPE NonStop), the landed order reflects with absolute certainty
the correct and consistent order that the events occurred in
for each individual file or table (or partition thereof). On other
platforms, the landed order may need to be re-sorted; however, the
re-sorted order reflects the correct and consistent event order.
In either case, replaying the events in the correct and consistent
order results in a correct and consistent target database.

Often (and always on HPE NonStop), the landed order
represents the simultaneous interthreading of many transactions
occurring at the same time. On some platforms/databases, a re-
sorted order returns the change events in transactional order,
based on the commit or abort completion time, such that all events
for a transaction are returned in a sequential group for each
transaction. Regardless, replaying the events in the order received
(whether landed or sorted), results in a correct and consistent
target database.

1 It is in “roughly” ascending time order due to the nature of the TMF flushing not
following a pure chronological order across all of the disk packs.

Switching Replication
Engines with Zero Downtime

Part 3Paul J. Holenstein, Executive Vice President, Gravic, Inc.
Dr. Bruce Holenstein, President and CEO, Gravic, Inc.
Dr. Bill Highleyman, Managing Editor, Availability Digest

\Left \Right

Target
Backup

Database
v6100Data Replicationv6100

Target
Backup

Database
v6400Data Replicationv6400

Audit
Trail

Database

Application

www.connect-community.org 31

When processing the audit trail, each replication engine
typically maintains a persistent “restart point” that reflects the
position from which it needs to restart should it stop/fail and
subsequently restart. This position reflects the point (or can be
used to derive the point) in the audit trail where the replication
engine needs to start reading in order to guarantee that it does
not miss/skip any data. At the restart in the best data replication
engine designs/implementations, the data replication engine does
not replay any data that it previously applied against the target
database, because this replay can cause data consistency issues
at the target during the restart/catchup sequence.

Figure 19 reflects a simplified view of the layout of the
internal events inside the audit trail (or the sequence of events,
because the audit trail is aggregated). In this figure:

• The audit trail is depicted as a sequenced queue
of change data events, where each event has an associated
transaction ID assigned to it. The front of the queue (removal/
extraction point) is to the right; the end of the queue (insertion/
arrival point) is to the left.

• Time moves from right to left. The oldest/earliest events
are to the right in the queue; the newest/latest events are to the
left in the queue.

Figure 19 – Simplified View of the Audit Trail When the Application is
Stopped at the Quiescent Point

If the application can be quiesced at a point where all
transactions have ended (the “Quiescent Point: No Active
TXs” in the figure), the original data replication engine takes
responsibility to replicate the events to the right of the quiescent
point, and the new data replication engine takes responsibility
to replicate the events to the left of the quiescent point, with no
transactions spanning it. It is fairly simple; however, since this
paper is about avoiding an application outage while the migration
or upgrade takes place, this “clean” switch-over point does not
exist for applications/transactions that remain active during the
switch-over process.

For this complex case, a more advanced algorithm is required,
where the application is active when the switch-over takes place,
as shown in Figure 20. In this figure:

• The audit trail again is depicted as a queue that grows with
change data events from right to left (time increases from
right to left).

• The switch-over point is selected to be at Timestamp(1). This
is the point the original data replication engine is stopped/
shutdown.

• The abort timer(2) represents a go-back interval from the
switch-over point, that is discussed below.

• TX(3) represents a transaction that started before the abort
timer(2) go-back interval, that commits before the switch-
over point.

• TX(4) represents a transaction that started and aborts before
the switch-over point.

• TX(5) represents a transaction that started before the switch-
over, but does not end until much later after the switch-over.

• TX(6) represents a transaction that started before the switch-
over, but does not commit (at the Commit(7) point) until after
the switch-over point.

• TX(8) represents a transaction that starts after the switch-
over point and ends at some later time.

Figure 20 – View of the Audit Trail when the Application Remains Active
Across the Switch-Over

The method to provide a clean, consistent, and complete
switch-over from the original data replication engine to the new
data replication engine depends on the method the original data
replication engine uses to replicate the audit trail data.

The Brute Force Replication Method
If the original data replication engine uses the Brute Force

Method to replicate:

• The original data replication engine takes responsibility to
replicate and apply/commit all transactional events that have
occurred before the switch-over point .

• In some cases, this replication may only include transactions
that have committed before the switch-over point, excluding
those that have aborted before the switch-over point.

• For transactions that are in progress at the switch-over
point (e.g., TX(5) and TX(6) in the figure), the original
data replication engine replicates and applies only those
events that occurred before the switch-over point,
performing a commit for each before shutting down. Since
these transactions may ultimately abort, the new data
replication engine is responsible for special processing of
the transactions to apply all follow-on data and any backout
events that might occur after the switch-over point.

• The new data replication engine takes responsibility to
replicate all new transactions forward (i.e., the events for
those transactions that start after the switch-over point).

The Brute Force Method does not maintain true data
consistency as it commits and materializes events for
transactions that may ultimately abort, as well as pre-
commit transaction events for those that are in process at the
switch-over point that ultimately commit. However, any such
inconsistencies are short-lived, only until those transactions
eventually complete (commit or abort) after the switch-over to
the new data replication engine.

The Transactional Replication Method
If the original data replication engine uses the Transactional

Replication Method to replicate:

• The original data replication engine takes responsibility to
replicate and apply/commit all transactional events that have
completed before the switch-over point.

Audit Trail Timestamp(1)

Switch Data
Replication Engines

Abort Timer(2)

TX(3)

TX(4)

Commit

Abort

TX(8)

Add Change
Events

Extract
Change
Events

TX(5)

TX(6)
Commit(7)

http://www.connect-community.org
http://www.connect-community.org

32 September - October 2018

• In some cases, this replication may only include transactions
that have committed before the switch-over point, excluding
those that have aborted before the switch-over point.
Regardless, only those transactions that have committed are
materialized in the target database at the switch-over point.

• For transactions that are in progress at the switch-over point (e.g.,
TX(5) and TX(6) in the above figure), the original data replication
engine either does not replay them, or aborts them when it shuts
down at the switch-over point. In some cases, the original data
replication engine may replay the data for transactions that are
in progress as of the switch-over point. However, before it shuts
down, it retrieves the backout events from the target side audit
trail and applies them for any transactions that were not completed
before the switch-over point. This process effectively matches
performing an abort for the transactions that are in progress at the
time of the switch-over.

• The new data replication engine must take responsibility to
replay:

 º All transactions that were in progress at the switch-over point.
 º All transactions that start after the switch-over point.

Although it is relatively straightforward to replicate all new
transactions created after the switch-over point, identifying those
that were in progress at the switch-over point can be complex.
Although other methods exist, one simple algorithm to identify
these transactions is to use the DBMS’s “auto abort” time as an
interval (Abort Timer(2) in Figure 20).

The abort timer is a DBMS-maintained timer that ensures no
transaction lasts (exists/runs) for more than a set period of time
(or audit trail duration). When an abort timer exists, it is known
that no transaction can last more than that amount of wall clock
time (or audit data) relative to the change’s time in the audit trail.
Hence, when the new data replication engine goes back from the
switch-over point to at least the abort timer amount of time in the
audit trail, it knows that no transactions started before this time
are still active at the switch-over point. The new data replication
engine computes the abort timer interval from using the switch-
over point’s timestamp (Timestamp(1) in the figure), deducts the
abort timer setting from this timestamp (e.g., deducts 2 hours
from the timestamp if the abort timer is 2 hours), and goes back
that far in audit. It then reads forward to the switch-over point,
tracking all transactions encountered. The new data replication
engine disregards all transactions that end before the switch-over
point since the original data replication engine took responsibility
to replicate them. For transactions still in progress at the switch-
over point, the new data replication engine replicates them as well
as all additional transaction events encountered from the switch-
over point forward.

The Transactional Replication Method maintains full data
consistency at the target as each transaction is replayed only once
at the target and in proper order. Of course, additional algorithms
exist for managing the jagged edge at the switch-over point, and
these algorithms are more complex for bi-directional replication

environments, but the main tenets remain the same. The original
data replication engine takes responsibility for replicating all
completed transactions before the switch-over point, with the new
data replication engine taking responsibility for replicating all in
progress transactions at the switch-over point as well as any new
transactions that started after this point.

Summary
Sometimes it is necessary to change or update a data

replication engine. Properly undertaken, a data replication engine
migration imposes no downtime on applications or users, and the
databases all remain consistent, complete, and up-to-date during
the process. This is called a zero downtime migration (ZDM).

Since there is no big-bang cutover, and the original and new
data replication engines do not need to interoperate, the ZDM
technique results in greatly reduced risks for error as well as staff
stress levels during the migration process. The migration can
take place over time at whatever pace the staff feels appropriate,
for instance, at normal working times when the staff is at its
best, rather than late at night or on weekends, thereby reducing
migration costs. It can even occur over an extended time period,
with the existing backup database continuously available and
fully synchronized with the production database, ensuring full
application and database availability during the migration process
as discussed in the three and four node examples.

This technique is similar to and leverages the HPE Shadowbase
Zero Downtime Migration technique that companies have used
for decades to upgrade their applications, database schema
formats, file and table locations/indices, operating systems, or
to perform a hardware refresh. Application outages that either
are planned to support an upgrade/migration or are caused by
poorly executed upgrades/migrations are outdated and should no
longer occur. Use the HPE Shadowbase ZDM technique to attain
continuous application availability with no risk, even across the
most disruptive migrations and upgrades.

There are numerous approaches and methods to thwart
common problems faced during a migration: Version Independence
avoids interoperating different software versions; utilizing three
nodes for partial hardware migrations or utilizing four nodes for a
full hardware refresh; and bi-directional environments that keep
all nodes synchronized as the migration takes place. Also, the
so-called jagged edge problem that occurs when performing any
replication engine migration must be resolved.

Switching replication engines with zero downtime is obviously
never easy. With proper preparation, planning, time, and project
assessment, all migrations should go flawlessly. HPE Shadowbase
software enables companies to leverage these migration methods
with proven solutions and implementations. The HPE Shadowbase
team is interested in discussing your specific project plans and
help you realize them.2

2 Contact Gravic or your HPE account team to discuss your plans.

Paul J. Holenstein is Executive Vice President of Gravic, Inc. He is responsible for the HPE Shadowbase suite of products. The HPE Shadowbase replication engine is
a high-speed, uni-directional and bi-directional, homogeneous and heterogeneous data replication engine that provides advanced business continuity solutions as
well as moves data updates between enterprise systems in fractions of a second. It also provides capabilities to integrate disparate operational application informa-
tion into real-time business intelligence systems. Shadowbase Total Replication Solutions® provides products to leverage this technology with proven implementa-
tions. HPE Shadowbase software is built by Gravic, and globally sold and supported by HPE. Please contact your local HPE account team for more information, or
visit https://www.ShadowbaseSoftware.com. To contact the authors, please email: SBProductManagement@gravic.com.

Dr. Bruce D. Holenstein leads all aspects of Gravic, Inc. as President and CEO. He started company operations with his brother, Paul, in 1980. His technical fields of exper-
tise include algorithms, mathematical modeling, availability architectures, data replication, pattern recognition systems, process control and turnkey software development.

Dr. Bill Highleyman brings years of experience to the design and implementation of mission-critical computer systems. As Chairman of Sombers Associates, he has
been responsible for implementing dozens of real-time, mission-critical systems - Amtrak, Dow Jones, Federal Express, and others. He also serves as the Managing
Editor of The Availability Digest (availabilitydigest.com). Dr. Highleyman is the holder of numerous U.S. patents and has published extensively on a variety of techni-
cal topics. He also consults and teaches a variety of onsite and online seminars.
Find his books on Amazon. Contact him at billh@sombers.com.

mailto:Contact%20Gravic?subject=
https://www.ShadowbaseSoftware.com
mailto:SBProductManagement%40gravic.com?subject=
mailto:billh%40sombers.com?subject=

