
30 July - August 2018

In Part 1 of this article series, we described how an existing
data replication engine could be replaced in a two-node
scenario with a new version or with a different replication

engine without taking an outage. As pointed out in that article, it
is important to avoid requiring that different replication engines
communicate with each other. Interoperation between different
versions is very dangerous, error-prone, and can produce faults.
In Part 1, we showed how a replication engine could be changed
without interoperating between differing versions. Let us first
review these procedures, and then we will look at eliminating the
versioning problem by using additional nodes. We also look at
protecting the standby system while the replication engines are
being switched.

Version Independence – Two Node Step Summary
To summarize the sequence of steps described in the Version

Independence process when using two nodes:

1.	Perform the initial checkout of the new replication engine
version in a non-production test environment.

2.	If OK, on the production target system create a test database
(PROOF) and load a representative sample of 20 tables from
the production source database (e.g., using HPE Shadowbase
SOLV).

3.	Configure and start replication using the new replication
engine version from the production source database to the
PROOF target database for the selected tables.

4.	Run in this mode until representative data changes are
processed by the new replication engine.

5.	Compare the updated data in the PROOF target database with
the production target database (e.g., using HPE Shadowbase
Compare). Alternatively, compare the data in the PROOF
database against the production source database.

6.	If the PROOF database compares OK, repeat steps 3, 4, and 5
with an increasing number of test tables.

7.	If OK, then incrementally add more tables to the PROOF
target database, removing them from the original production
replication version configuration.

8.	Once all tables have been migrated to the new replication
engine version, decommission the original replication
version.

Of course, variations on this theme to accommodate specific
environment and requirements are possible.

Version Independence – Two Node Pros and Cons
It is helpful to compare and contrast the benefits (pros) and

issues (cons) for each approach discussed in this paper. For the
simplest case of Version Independence when using two nodes as
described above:

Pros
1.	Avoids the risks associated with replication engine version

interoperation. In some cases, version interoperation is not
even possible (i.e., when the replication engines are from
different vendors, which is an especially important aspect for
bi-directional replication environments).

2.	Avoids (or at least minimizes) any application outage that
might be required to convert to the new replication engine.

3.	Can be performed in a test manner on the production
environment first, before taking over production replication.
The new replication engine can be fully tested and proved
to be configured and working properly before starting the
upgrade process. There is not a risky big-bang cutover to
the new replication engine environment without having first
verified correct operation. Additionally, when the cutover
does occur, it is to a known-working environment.

4.	Can be performed incrementally, with a small set of files/
tables to start, and grow at the speed or schedule that the
staff feels is appropriate.

5.	Scaling the new replication engine environment can be
accomplished slowly and methodically, validating that the
environment is properly configured to handle the load, which
minimally affects the existing production environment before
more load is added.

6.	If anything goes wrong, falling back to the original
replication engine is simpler, easier, and occurs with a
smaller data set than the traditional big-bang approach.

7.	Can be accomplished during normal staff working hours (if
desired) and does not require an off-hours effort to deploy
the migration project.

 Cons
1.	“Thrill-seekers” may not appreciate the Version

Independence process, since it has a tendency to make the
upgrade less of an “adrenaline-filled roller-coaster ride.”

2.	Using the same two nodes for the migration that are being
used for production processing increases the chances of
adverse impact to the production environment. This issue is
addressed in the following sections.

Switching Replication
Engines with Zero Downtime

Part 2Dr. Bruce Holenstein, President and CEO, Gravic, Inc.
Paul J. Holenstein, Executive Vice President, Gravic, Inc.
Dr. Bill Highleyman, Managing Editor, Availability Diges

www.connect-community.org 31

Protecting the Standby System
One problem with the Version Independence process when

using two nodes is that it uses the production and DR Standby
(DRS) systems as the location(s) where the migration takes place.
This approach is reasonable for environments where only two
systems/environments are available. However, this approach
is more desirable for environments that can leverage a third
system during the migration, since it lessens the risk of any
issues occurring to the production environment itself during the
migration. (A third node is often available by using a development
system, or loaning one for a short period.) Fewer/no changes
are initially needed on the production source system, and a
valid backup system (the original DRS) is always available for
production failover with its original configuration and database
intact, if it is needed. In other words, migration isolation is
achieved.

Protecting the Standby System When Using Uni-directional
Replication – Three Node Step Details

This problem can be solved by not touching the existing/
original replication environment during the migration process.
The plan is to create a new DRS with the new data replication
engine on a third node. To accomplish this plan, the new
replication engine is configured on the production source system
replicating to the new DRS system (the third node).

When the new DRS has been created, loaded, and
synchronized, its database contents are compared with those of
the original DRS to ensure that the new DRS is correct, as shown
in Figure 12. The original DRS is only shut down if the comparison
shows that the new DRS is correct. Alternatively, for this
approach or any discussed in this paper, the compare could be
performed between the production database and the new DRS’s
database. In this way, the company can be absolutely certain that
the new replication engine is functioning properly without having
to rely on whether the original replication engine was maintaining
a correct and complete copy of the database on the original DRS.
(Oftentimes, in our experience, it is not.)

Figure 12 – Creating a New Target Database from the Production System

 Ideally, similar to other approaches discussed in this paper,
before shutting down the original replication engine and the
original DRS, a failover to the new DRS should be performed
to ensure that it is a complete and correct environment for
which the application can run. While running on the new DRS,
reverse replication can be used to keep the production database
synchronized. Once it has been established that the new DRS is
fully functional, production processing could be returned to the
production database. The original data replication engine and the
original DRS can then be shut down at this point.

Figure 13 – Creating a New Target Database from the Standby System

An alternative approach is shown in Figure 13. The main
benefit of this approach is that it does not affect the production
environment until much later in the migration process. The new
DRS is created by replicating to it from the original DRS, using
the new data replication engine. Of course, the original DRS
should be validated via a complete compare sequence before
using it as the source to ensure that it accurately matches the
production environment. When the replication testing is complete
and the databases compare successfully, the original DRS can
be shut down, since the new DRS is a known-valid copy. The new
replication engine is installed on the production system, and the
new DRS is then kept synchronized with the production system via
the new data replication engine.1 Note that this approach requires
that the original DRS is known to be a consistently correct copy of
the production database.

This approach is often preferred because it does not require
changes to the production system while the new DRS environment
is built and validated. Instead of the production system having to
support two replication engines, the original replication engine is
simply replaced with the new replication engine when the upgrade
takes place. Furthermore, the original DRS is typically less
busy than the production system and has the extra capacity to
perform the additional replication to the new DRS. As mentioned
previously, before decommissioning the original environment,
an additional check should be made to compare the production
database to the new DRS database to be absolutely certain that
both match. If they do not, the migration is paused, the cause
identified/fixed, and the upgrade sequence is restarted – all
without affecting the production environment and with minimal
impact to the original DRS.

Version Independence – Three Node Step Summary
To summarize the sequence of steps described in the Version

Independence process when using three nodes:

1.	Perform the initial checkout of the new replication engine
version in a non-production test environment.

2.	If planning to use the production system as the source for
the migration:

a.		If initial checkout OK, on the new DRS target
system create a test database (PROOF) and load
a representative sample of 20 tables from the
production source database (e.g., using HPE
Shadowbase SOLV).

b.	Configure and start replication using the new
replication engine version from the production source
database to the PROOF target database for the
selected tables.

1 For this approach and the others discussed, knowing precisely where to start the new
replication engine for replicating from the source environment’s change log to the new
target environment is a complex task, and is discussed in the next article, Part 3.

Compare

Original DRSProduction
System

New DRS

Engine
Original Replication

Original DRSEngine
Original ReplicationProduction

System

New DRS

CompareNew Replication
Engine

http://www.connect-community.org
http://www.connect-community.org

32 July - August 2018

c.	Run in this mode until representative data changes are
processed by the new replication engine.

d.	Compare the updated data in the PROOF target
database with the production target database (e.g.,
using HPE Shadowbase Compare). Alternatively,
compare the data in the PROOF database against the
production source database.

e.	If the PROOF database compares OK, repeat the steps
above with an increasing number of test tables.

f.	 If OK, then incrementally add more tables to the PROOF
target database, removing them from the original
production replication version configuration.

g.	Once all tables have been migrated to the new
replication engine version, decommission the original
replication version and original DRS.

3.	If planning to use the original DRS as the source of the
migration:

a.	If initial checkout OK, on the new DRS target
system create a test database (PROOF) and load a
representative sample of 20 tables from the original
DRS database (e.g., using HPE Shadowbase SOLV).
First, ensure that the original DRS database is a correct
and consistent copy of the production database.

b.	Configure and start replication using the new
replication engine version from the original DRS
database to the PROOF target database for the selected
tables.

c.	Run in this mode until representative data changes are
processed by the new replication engine.

d.	Compare the updated data in the PROOF target
database with the original DRS database (e.g., using
HPE Shadowbase Compare). Alternatively, compare the
data in the PROOF database against the
production source database.

e.	If the PROOF database compares OK,
repeat the steps above with an increasing
number of test tables.

f.	 If OK, then incrementally add more tables
to the PROOF target database and to the
new replication engine configuration.

g.	Once all tables are added to the new
replication engine version and the new DRS
target database compares successfully,
install the new replication engine on
production and configure it to directly
replicate to the new DRS target database.

h.	Validate that the new replication engine is working
properly (e.g., compare the production source database
and the new DRS target database after running), and
then decommission the original replication version and
original DRS.

Of course, variations on this theme to accommodate specific
environment and requirements are possible.

Version Independence – Three Node Pros and Cons
For the case of Version Independence when using three nodes:

 Pros
1.	The three node Version Independence process provides the

same benefits as the two node process, while also reducing
the impact to the production node (or at least impacting it
far later in the migration process).

2.	There is minimal impact to the original DRS, and it is
available the entire time the migration is taking place as a
failover backup, if it is needed.

3.	Once the migration has taken place, the original DRS system
is available for failback, if it is needed.

4.	Once the migration to the new replication engine and new
DRS has occurred, the newly created data can be reverse
replicated into the original DRS to keep it synchronized. If
a subsequent failback is needed, it can be accomplished
without requiring a reload of the original DRS.

 Cons
1.	The three node Version Independence process still has

an impact on the production node that can be avoided
when using a four node Version Independence process (as
discussed in the following section).

Version Independence – Four Node Step Details
Yet another approach is shown in Figure 14. This approach is

often used if the company is doing a full hardware refresh of both
the production and the original DRS systems (making four nodes
available for the migration). An entirely new production/standby
configuration is purchased and is thoroughly tested with both the
application and new data replication engine, including failover and
failback, etc., which is represented by the lower set of systems
in the figure (New Production System and New DRS). In such
cases, the operating system and other subsystems on the refresh
hardware are often new(er); therefore, additional extended testing
of this new environment is warranted. The Version Independence
process accommodates a testing cycle of arbitrary duration,
allowing the staff to fully certify that the new environments are
properly functioning before beginning the migration process.
Only after this certification is achieved, can the actual migration
process take place (i.e., loading the New Production System from
the Original DRS).

 Figure 14 – A Full Uni-directional Hardware Refresh

To begin the migration process, the new production system
is loaded from the original DRS to avoid affecting the production
system, assuming the original DRS is known to be a correct
and consistent copy of the production database. Then the new
replication engine is installed on the original DRS and both of the
new systems, and replicates the data changes from the original
DRS to the new production system, as well as the new production
system’s changes to the new DRS. The contents of the new DRS are
compared to those of the original DRS (or the original production
system for absolute certainty). If the contents are correct, users
are migrated in a controlled fashion from the original production
system to the new production system; of course, they can be
brought over all at once if that is desirable. Once this step is
completed, the original production system and original DRS system
can be decommissioned.

Original DRSEngine
Original ReplicationOriginal

Production
System

New DRS

Compare

New
Production

System

Users

New Replication
Engine

Migrate
Users

Users

www.connect-community.org 33

Note in this example that the changes to the new production
system are not being reverse replicated into the original
production system. Reverse replication would be helpful if a
failback to the original production system is needed to preserve
all of the newly created data before the failback occurred. If a
failback occurs, the newly generated data will not be present in
its database. This problem can be avoided by reverse replicating
the users’ changes from the new production system to the
original production system for the users that have been cut
over. If all users are not cut over at the same time, care must
be taken to avoid re-replicating these user changes from the
original production system through the original DRS to the new
production system (e.g., avoid a circular network map). Either
implement the data replication cut-off in the new replication
engine that is replicating from the original DRS to the new
production system (e.g., using data content filtering), or use the
preferred bi-directional replication approach (as discussed in the
following sections on bi-directional replication).

Version Independence – Four Node Step Summary
To summarize the sequence of steps described in the Version

Independence process when using four nodes:

1.	Perform the initial checkout of the new replication engine
version and the new systems in a non-production test
environment. Since both the production and original DRS
are being replaced with a new production and new DRS
system, full application and data replication engine testing,
(including failover and failback, etc.) should be performed
on the new systems. Do not continue until all tests
successfully complete.

2.	If OK, install and configure the new replication engine on
the original DRS, the new production system, and the new
DRS.

3.	Create the new database on the new production system and
the new DRS.

4.	Load the new database on the new production system and
the new DRS (e.g., using HPE Shadowbase SOLV). First,
ensure that the original DRS database is a correct and
consistent copy of the original production database. If it is
not, rectify that issue before performing the migration.

5.	Configure and start replication using the new replication
engine version from the new production system to the new
DRS as well as from the original DRS database to the new
production system.

6.	Run in this mode until representative data changes have
been processed by the new replication engine all the way
through the new production system to the new DRS.

7.	Compare the updated data in the new production database
with the original DRS database (e.g., using HPE Shadowbase
Compare). Alternatively, compare the data in the new
production database against the original production source
database. Do the same for the new DRS database.

8.	If the databases compare OK, migrate the users from the
original production environment to the new production
environment.

9.	If reverse replication is needed, stop replication from the
original DRS to the new production system, and replicate
from the new production system back to the original
production system to keep its database synchronized. If
desired (and it is recommended), the original production
system can then continue to replicate to the original DRS to
keep the original DRS in sync as well. Of course, if the data
schemas change from the original format to a new format,
configure those changes into the reverse replication path
(new production system to original production system).

10.	When the new production system, new replication engine,
and new DRS are performing satisfactorily, decommission
the original production system, original replication engine,
and original DRS.

Of course, variations on this theme to accommodate specific
environment and requirements are possible.

Version Independence – Four Node Pros and Cons
For the case of Version Independence when using four nodes:

 Pros
1.	The four node Version Independence process provides the

same benefits as the three and two node processes, while
adding in far less impact to the original environment. In our
experience, the four node Version Independence process
is the safest and most reliable approach available today,
since it requires no impact to the production application
environment/database, and it affects the original DRS much
later in the migration process.

2.	Once the migration has taken place, both the original
production and the original DRS systems are available for
failback, if they are needed.

3.	If reverse replication is used (a best practice), the original
production system and original DRS are kept up-to-date
with the data changes made at the new environments.
Reverse replication is very helpful, if a failback to the
original environment is needed.

4.	Once the migration to the new production system and
new DRS has occurred, this new mode can run for as
long as necessary to prove that the new environment is
properly working. The original environments then can be
decommissioned when the new environments are known to
be correct.

Cons
1.	The four node process perhaps is more complex than some

of the simpler processes previously described; however, it
introduces far less risk and occurs far later in the migration
process.

Any upgrade or migration project can be risky. This risk is
compounded when full application services must be provided
while the upgrade or migration takes place. The Version
Independence process does an excellent job of mitigating or
eliminating this risk while this process occurs, allowing staff
members to proceed at their own pace and schedule, when they
feel the new environment has been proven, and when they are
comfortable with migrating. The Version Independence process
is being used now in real production environments to attain these
benefits and eliminate these risks.

Protecting the Standby System when Using Bi-
directional Replication

The sequence is more complicated if bi-directional replication
is being used between the production database and the target
database during an upgrade to a new bi-directional replication
engine. In these cases, the two replication engines do not
typically interoperate and know of the changes each is making/
replicating, thereby increasing the potential for (incorrect) data
oscillation between the nodes. Changes made by the original
DRS simply cannot be replicated to the new DRS because the
replication engines are different. Therefore, for a two-node
environment, it is recommended to create a third environment,
preferably on a third node, as shown in Figure 15.

http://www.connect-community.org
http://www.connect-community.org

34 July - August 2018

 Figure 15 – Creating a New Target Database from the Production System
Using Bi-directional Replication

In this figure, bi-directional replication via the original
replication engine is used between the production system and
the original DRS, and the goal is to migrate to the new replication
engine with a new DRS. After the new DRS is available and has
been fully tested, the new replication engine is configured, and the
new DRS database is loaded and synchronized; the environment is
ready for the migration process to begin. This sequence and effort
is similar to the one previously discussed (Figure 12).

Application changes made at the production system
essentially are uni-directionally replicated to the
original DRS via the original replication engine, as well
as to the new DRS via the new replication engine. Each
bi-directional replication engine takes care not to ping-
pong back the changes to the production system.

Application changes made to the database at the
original DRS system are replicated to the production
system via the original replication engine, where
they update the production database. These changes
appear to the new replication engine as if they are
“application” changes (because the new replication
engine did not make them), and are subsequently
routed through the production system to the new
DRS by the new replication engine. The production
system is thus acting as a router (called a route-
through node) for these changes, and routes them
to the new DRS system via the new replication engine. Since the
new replication engine is bi-directionally replicating between the
production system and the new DRS, it knows not to route back
these changes to the production system (classic bi-directional cut-
off).

Eventually, the application changes made at the new DRS follow
a similar, although reversed, approach to update the production

database. Eventually, the changes that are applied
by the new replication engine are routed through the
production system by the original replication engine to the
original DRS. In this way, all three of the systems remain
synchronized with each other, with a change made at any of
them properly reflected in all three databases. During this
time, each DRS database/system is ready to take over if the
production system experiences a fault.

An alternative approach is shown in Figure 16. This
approach is preferred by many companies because it
does not impact the production node until very late in the
migration process, after the new DRS is built, deployed,
synchronized, and proven to be functioning correctly.

The new DRS is created via the original DRS database
replicating to it with the new bi-directional data
replication engine (the solid lines/arrows in Figure 16). By

using bi-directional replication, changes made to either DRS are
reflected in the other DRS. These changes are ultimately replicated
to the production system from the original DRS via the original
replication engine.

When the new DRS is synchronized and ready to take over (i.e.,
the databases are compared and are correct), the new replication
engine is installed and started on the production system, if not
done previously (the dashed lines/arrows in Figure 16). The
original replication engine and the original DRS then can be shut
down, since the new DRS is a known-valid copy.

Figure 17 – A Full Bi-directional Hardware Refresh

The new replication engine begins replicating from production
to the new DRS at the point where the original replication engine
was shut down. Similarly, the new engine is configured to reverse
replicate from the new DRS to production from the point where it
shut down when it was previously replicating to the original DRS
by using the same restart point, or a point somewhat earlier in
the change log2. From that point forward, the production system

and the new DRS are kept synchronized via the new
replication engine (the dashed lines/arrows in the
figure).

Another approach is shown in Figure 17. This
approach often is used if the company is doing a full
hardware refresh of the production and DRS systems.
An entirely new production/standby configuration

2  The point where the old replication engine shuts down can be a
timestamp, audit trail position, or other point where it is known that all
transactions prior to this point were replicated by the old replication
engine. As the new replication engine, HPE Shadowbase software
then can be configured to start replicating from this point, and take
responsibility for replicating all transactions in the audit trail. HPE
Shadowbase software also can be configured to replicate transactions-
in-flight at the point of shutdown (i.e., the so-called jagged edge, as
discussed later in this paper). This process is much more complicated
if all nodes are actively processing transactions and making changes
to their databases when the switchover occurs. Contact Gravic for
additional details if contemplating this approach.

Original DRSEngine
Original ReplicationProduction

System

New DRS

Compare

Original DRSEngine
Original ReplicationProduction

System

New DRS

Compare, and
New Replication

Engine

Figure 16 – Creating a New Target Database from the Original DRS Using
Bi-directional Replication

Original DRSEngine
Original ReplicationOriginal

Production
System

New DRS

Compare

New
Production

System

Migrate
Users

Users

New Replication
EngineUsers

mailto:shadowbase%40gravic.com?subject=

www.connect-community.org 35

is purchased, configured with the new replication engine, and
thoroughly tested. The new production system is loaded from the
original DRS and configured to replicate changes made to it back
to the original DRS as well as to the new DRS. The new DRS then
can be loaded from the new production system.

Once all databases are loaded and synchronized, customers
often run an extra set of tests with the new production system
and new DRS to verify full application processing across end
of day, week, month, etc. If database changes are made in
the new environment that are not needed back in the original
environment, the reverse replication link to the original DRS
needs to be shut down while this step occurs.

When ready to move forward with the migration, the contents
of the new DRS are compared to those of the original DRS (or
to the production database), and if they are correct, users are
migrated in a controlled fashion from the original production
system to the new production system. Changes made to either
production system are bi-directionally replicated to the other one
by the original DRS because it is not acting as a route-through
node. Once the user migration has been completed, the original
production system and original DRS system can be left running
as a failback environment, and then eventually decommissioned
once the new environment is fully trusted.

Version Independence –
Bi-directional Considerations

Bi-directional replication causes additional considerations for
the migration process:

1.	When switching from one vendor’s bi-directional replication
engine to another’s, special care must be taken to make
sure the replication engines interoperate properly, without
causing infinite-loop data oscillation. This goal typically is
achieved by setting up the original DRS as a route-through
node.

2.	At the customer’s choice, the new replication engine
connection back to the original DRS can be shut down after
the users are migrated to the new production system. If
left operational, the new replication engine can continue
to run between the new production system and the original
DRS, which keep the original production environment
synchronized with any data changes, if a failback is needed.

3.	It is simplest to migrate all users from the original
production environment to the new one at the same
time, which provides a cleaner shutdown and takeover
point for the new replication engine. If migrating users
slowly and in batches, care must be taken to avoid data
oscillation and potential data collisions (same data being
updated at the same time at more than one node). When
configured correctly, the replication engines manage the
data oscillation problem; the data collision problem should
be handled via a partitioned set of moves so that any data
item can only be updated in one place at a time. Otherwise,
data collision identification and subsequent resolution
algorithms must be added into the migration sequence.

Version Independence –
Bi-directional Pros and Cons

Bi-directional replication environments add in additional
complexity, but also provide additional capability:

 Pros

1.	Bi-directional environments allow the users to be moved
from one application copy/system to another without
changing the data replication engine’s configuration in
order to reverse replicate the changes after cutover; this
feature already is provided by the data replication engine.

2.	Bi-directional environments automatically keep all
environments synchronized, meaning there is no data loss
after the migration takes place if a subsequent failback to
the original environment is needed.

 Cons
1.	Bi-directional environments are more complex, and each

vendor typically has its own/internal algorithms for
managing the bi-directional data oscillation problem.
These algorithms are typically specific and unique to each
vendor, and the data replication engines typically do not
interoperate properly to avoid oscillation. Hence, when
faced with this issue, the best approach is to designate a
route-through node to avoid any data oscillation issues (as
discussed in the previous section).

2.	The entire migration becomes more complex if users are
migrated in batches, potentially causing data collisions
subsequently to occur. Data collisions must then be identified
and resolved (if using asynchronous replication), or avoided
via request/data partitioning or via synchronous replication.3

Summary
Sometimes it is necessary to change or update a data

replication engine. Properly undertaken, such a migration will
impose no downtime on either applications or users. We call this a
zero downtime migration.

In this Part 2, we have discussed how the Version
Independence of the migration can be improved using one or
two additional nodes. This migration technique is similar to the
HPE Shadowbase Zero Downtime Migration (ZDM) technique
that customers have been using for decades to upgrade their
applications, database schema formats, file and table locations
(or indices), operating systems, or perform a hardware refresh.4

In the next article, Part 3, we will discuss how to switch
replication engines without missing or re-replicating any data
(solving the so-called jagged edge problem).

3  Contact Gravic for further details on these more complex configurations.
4  For additional information, please see the white paper, Using HPE Shadowbase
Software to Eliminate Planned Downtime via Zero Downtime Migration.

Paul J. Holenstein is Executive Vice President of Gravic, Inc. He is responsible
for the HPE Shadowbase suite of products. The HPE Shadowbase replication
engine is a high-speed, uni-directional and bi-directional, homogeneous and
heterogeneous data replication engine that provides advanced business con-
tinuity solutions as well as moves data updates between enterprise systems in
fractions of a second. It also provides capabilities to integrate disparate op-
erational application information into real-time business intelligence systems.
Shadowbase Total Replication Solutions® provides products to leverage this
technology with proven implementations. HPE Shadowbase software is built by
Gravic, and globally sold and supported by HPE. Please contact your local HPE
account team for more information, or visit https://www.ShadowbaseSoft-
ware.com. To contact the authors, please email: SBProductManagement@
gravic.com.

Dr. Bruce D. Holenstein leads all aspects of Gravic, Inc. as President and CEO.
He started company operations with his brother, Paul, in 1980. His techni-
cal fields of expertise include algorithms, mathematical modeling, availability
architectures, data replication, pattern recognition systems, process control
and turnkey software development.

Dr. Bill Highleyman brings years of experience to the design and implementa-
tion of mission-critical computer systems. As Chairman of Sombers Associates,
he has been responsible for implementing dozens of real-time, mission-critical
systems - Amtrak, Dow Jones, Federal Express, and others. He also serves
as the Managing Editor of The Availability Digest (availabilitydigest.com). Dr.
Highleyman is the holder of numerous U.S. patents and has published exten-
sively on a variety of technical topics. He also consults and teaches a variety of
onsite and online seminars.
Find his books on Amazon. Contact him at billh@sombers.com.

http://www.connect-community.org
http://www.connect-community.org
mailto:shadowbase%40gravic.com?subject=
https://shadowbasesoftware.com/white-papers/2015/07/using-shadowbase-to-eliminate-planned-downtime-via-zero-downtime-migrations-white-paper/
https://shadowbasesoftware.com/white-papers/2015/07/using-shadowbase-to-eliminate-planned-downtime-via-zero-downtime-migrations-white-paper/
https://www.ShadowbaseSoftware.com
https://www.ShadowbaseSoftware.com
mailto:SBProductManagement%40gravic.com?subject=
mailto:SBProductManagement%40gravic.com?subject=
http://availabilitydigest.com
mailto:billh%40sombers.com?subject=

