
20 March - April 2018

Introduction
A perennial problem in the IT world is how to handle the ebb

and flow of user demand for IT resources. What is adequate to
handle the demand at 3am on Sunday is not going to be sufficient
to cope with the demand at noon on Black Friday or Cyber Monday.
One way or another, IT resources must be sufficiently elastic to
handle this range of user demand – they must be able to scale.
If a company’s IT resources are not able to sufficiently scale to
keep up with demand at any given time, a service outage will most
likely result, with major consequential impact to the business. As a
result, the matter of IT resource scaling is of great concern for IT
departments.

What is All this Scale-up/out/sideways/down
Business Anyway?

How are IT processing resources scaled? The most obvious
answer is to simply add more hardware to an existing system
– more processors, more memory, more disk storage, more
networking ports, etc. Alternatively, simply replace a system with
one that is bigger and more powerful. This approach is known as
scaling-UP, or vertical scaling.

The biggest problem with this approach is that of diminishing
returns. Most scale-up systems use a hardware architecture
known as symmetric multiprocessing (SMP). Simply put, in an
SMP architecture, multiple processors share a single block of
physical RAM. As more processors are added, contention for this
shared memory and other shared resources becomes a significant
bottleneck so that less and less actual performance benefit is
realized for each processor added. Each additional processor yields
less than 1x the power of that processor; the more processors,
the more contention and the less incremental benefit. As more and
more resources are added, eventually the system is simply unable to
scale any further to meet user demand. The same restriction applies
when a system is replaced; eventually there will not be a single SMP
system powerful enough to meet peak capacity demands.

Besides the scalability limits, there are other issues with the
scale-up approach:

High cost
•	More and more hardware must be added to the system in

order to meet user demand, because of the inefficiencies of
scale (diminishing returns of additional processors, etc.).
Or the system must be replaced with a larger, faster one. In
either case, the hardware costs are significant.

•	The system must be sized to serve the highest projected
demand, which is a waste of expensive resources at times of
lesser demand (probably the majority of time).

Large failure domain or poor fault-tolerance
•	Loss of a single system will result in a service outage.

•	Greater risk of outage after local incident, since systems are
monolithic and cannot be geographically dispersed.

•	Migration to a larger system is usually performed via the
“big-bang” technique,1 which has a high degree of risk/
failure, is disruptive, and requires an outage. Such “rip and
replace” migrations are difficult to test, as is fallback to an
existing system.

Hardware vendor lock-in
•	Additional hardware generally must come from the same

vendor as existing components.

•	It is costly to change vendors as the entire hardware and
software stacks must be replaced, IT staff must be re-
trained, etc.

Scale-out: the Elastic Solution
If vertical scaling has such significant issues, what are

the alternatives? First, use a server with a different hardware
architecture, a massively parallel processor (MPP). In an MPP
architecture, each processor acts like a separate system, with
its own memory, disks, and other hardware resources (“shared
nothing”). Workload is distributed by the operating system
and other software components across the processors, which
communicate with each other via a high-speed message bus.
Compared with an SMP, an MPP has no contention for shared
resources (RAM, etc.); therefore, each processor delivers nearly
100% additional performance because MPP capacity scales
linearly. The most well-known and successful MPP in the industry
is the HPE NonStop server, which can scale linearly from 2-16 CPUs
per system. However, what happens when a single system is not
sufficient to handle the workload, or better availability is required?

Enter scale-OUT, or horizontal scaling. With scale-out,
additional compute resources are provided by simply adding more
servers, with the workload distributed between them (Figure 1). A
scale-out architecture has the same characteristics and benefits
as an MPP. In fact, an HPE NonStop server can be considered a
scale-out system in a box. However, a scale-out architecture is
unconstrained in terms of how many additional servers can be
added, or the type of processors employed within each server
(SMP or MPP). For example, a single HPE NonStop server can first
scale-out by adding more CPUs, then by adding more NonStop
servers to the network (up to a total of 255 servers). A scale-out
architecture is able to meet much higher user demand levels than
a scale-up architecture, because there essentially is no limit to the
number of servers that can be incorporated.

Scale-up is Dead,
Long Live Scale-out!
Keith B. Evans Shadowbase Product Management, Gravic, Inc.
Paul J. Holenstein Executive Vice President, Gravic, Inc.

1 The “big-bang” technique of migration refers to the classic (and outdated) approach of requiring an outage of the primary environment in order to load, start, and cutover to the
new environment. There are now newer techniques available that reduce the inherent risk of the big-bang approach, by allowing the new environment to be built, tested, validated,
loaded and then synchronized before the cutover occurs. These techniques eliminate or at least dramatically reduce application outage time for the migration at substantially reduced
risk. For more information, see Using HPE Shadowbase Software to Eliminate Planned Downtime via Zero Downtime Migration.

https://shadowbasesoftware.com/white-papers/2015/07/using-shadowbase-to-eliminate-planned-downtime-via-zero-downtime-migrations-white-paper/

www.connect-community.org 21

Besides unlimited scalability, there are other benefits of the
scale-out architecture over the scale-up architecture:

Better capacity utilization
•	A scale-out configuration does not suffer the resource

contention issues of an SMP; each additional processor
delivers its full capacity. Hence, fewer system resources
are required for a given workload than for a scale-up SMP
system. A few smaller and cheaper servers can handle the
same workload.

•	It is easier and more cost effective to add (and remove)
additional systems as load increases (or decreases). With
a scale-up architecture, the extra capacity is wasted when
not in use.

•	Less overall capacity is lost when a failure occurs, because
servers are smaller.

Lower cost
•	It is incrementally much cheaper to add additional server

capacity than to replace a single server with a larger, faster
one; the existing hardware investment is preserved.

•	Additional compute resources can be added via cloud service
providers on demand as required, and released when no
longer needed.

Excellent availability characteristics
•	Since multiple systems are employed, the failure of any one

does not result in a total service outage.

•	Multiple servers can be geographically dispersed, which
reduces outage risk from a localized incident.

•	Zero downtime migration – hardware and software can be
upgraded without service interruption and at a much lower risk.
If necessary, upgrades can be incrementally performed while
existing servers are maintained and leveraged as a fallback.

No hardware or software vendor lock-in
•	Additional servers can be added to an existing scale-out

architecture regardless of vendor.

But What About the Application?
Good question. Scale-up and scale-out architectures are very

different from an application point-of-view. With a single large
system (a vertical scaling model), like an SMP architecture, all
applications run on that system and can access the same shared
memory. This architecture tends to lead to monolithic application
processes, which run multiple parallel threads and use shared
memory as the primary method for sharing data and context/state
between the threads/processes.

This type of application model is adequate for an SMP as
the system is still able to handle user demand. But at some
point, the system limits will be reached, and it will be necessary
to move to a scale-out solution, migrate the application with
much difficulty, and take advantage of the unlimited scalability
provided. Therefore, from the outset, it is a best practice to write
applications for a scale-out architecture and be prepared to scale
(up or down) when needed.

Applications written for scale-out are easily spread across
multiple systems, and workload can be distributed across any
instance of the application process and on any system. As
demand increases, it is simple to first instantiate more application
processes across existing systems, and then meet demand across
additional systems, if necessary.

This application scalability is primarily achieved by avoiding
the use of shared resources (memory, etc.), and by not internally
maintaining state (stateless servers). Ignoring either of these
techniques limits the ability to distribute workload equally across
all systems and application instances by forcing requests to
be serviced by particular application instances/systems, which
thereby limits scalability. Rather than offering all user services in a
single monolithic application, scale-out applications provide them
via many, smaller process instances. These instances are able to
interoperate via inter-process communication (IPC), each offering
a subset of the whole and grouping “like” services together (e.g.,
separating long-running requests from short-running requests),
which enables the optimization of workload distribution, improving
average response times, as well as scaling ability. Small footprint
processes are also quick to spin up and down as user demand rises
and falls in order to maintain desired throughput and application
response times. Starting additional large processes to add
capacity is not ideal if a system already is under heavy load.

The Elephant in the Room
Therefore, applications can be designed for scale-out, but

there is an elephant in the room. As previously discussed, it is
important that applications should be stateless and not use shared
memory, but at some point, they have to access shared data. It
does not significantly improve scalability/availability if workload
can be distributed across multiple application server instances,
yet still be forced to access a single database residing on a single
server. Similarly, partitioning the data across multiple systems
only provides partial relief. In order to maximize scalability/
availability in a scale-out architecture, shared data must be locally
available to all systems participating in the application. Each copy
of the data must be kept consistent with all other copies as the
data is being updated, regardless of on which system application
updates are being executed. Enter real-time data replication.

With transactional real-time data replication implemented
between all systems participating in the application, multiple
copies of the database can be distributed across each system,
which are kept consistent as data is changed on any system. This
distribution optimizes scalability by, a) allowing user requests
to be routed to any system based on load (the so-called “route
anywhere” model), and b) by scaling the database and also the

Figure 1: Scale-up vs Scale-out

www.connect
-community.org

22 March - April 2018

application (i.e., removing the database as a source of contention
and hence a bottleneck). If any system fails, other systems
have up-to-date copies of the database on which processing
can continue, thereby maximizing application availability. This
characteristic applies not only to unplanned outages, but also to
planned system maintenance, which can be performed serially
across systems so that no application outages ever need to occur.
This characteristic even applies to system and software upgrades,
allowing for zero downtime migrations (ZDM).

The highest levels of scalability (capacity utilization) and
availability are obtained by using an active/active application
architecture as described above, where user requests are
distributed and executed on any system. The scale-out principle
also may be applied to active/passive and sizzling-hot-takeover
(SZT) configurations. In these configurations, all update
transactions are executed on a single active system, but scalability
can still be achieved via the use of data replication from the
active system to multiple passive systems, which are then used
for read-only or query type applications. A good example of such
an architecture is a so-called “look-to-book” application. Multiple
read-only nodes are used to look-up information (e.g., airline/hotel
seat/room availability, or stock prices), while the active system is
only used when an actual transaction is executed (e.g., an airline/
hotel reservation, or a stock trade). It thereby offloads the active
system and scales-out the workload across multiple systems
without requiring the application to run fully active/active.2

Scale-out Example: Telco Phone Billing and
Provisioning System

An example of a scale-out architecture is shown in Figure 2,
demonstrating the use of both active/active systems and multiple
read-only nodes to achieve continuous availability and horizontal
scaling. A major international telco realized that its Home Locator
Register (HLR) application could no longer support requirements
to provision and manage smart phones, since the management
of smart phone features is far more complex than for older,
simpler cell phones. Therefore, the company implemented a new
distributed active/active HPE NonStop server system to provision
smart phones and to manage its more complex billing and service
requirements. In order to handle the ever-increasing load, as
well as the active/active pair that serve as the continuously
available “master” system, multiple scale-out read-only query
(“subordinate”) nodes were also implemented, from which the
HLRs obtain the smart phone provisioning information required to
establish calls and verify/bill for services.

HPE Shadowbase technology provides the data replication
infrastructure between these multiple nodes to support both the
continuous availability of the active/active pair and to keep the
data on the query nodes synchronized with the database of record.
Both active NonStop nodes and all of the query nodes share
exactly the same data. Though the master system load is relatively
small, the query load is intensive as there must be an HLR query
for each call being established. Since the master database is
replicated to the query nodes, the master system is not burdened
with query processing, and the architecture can easily scale to
handle any load as the number of smart phones increases. The
query nodes are distributed near population centers to improve
query performance, which shortens call establishment time. In the
initial deployment, the telco is using six query nodes. As activity
increases, more query nodes can be easily added to scale-out the
application without any interruption to existing service, which
would not be possible with a scale-up architecture.

Summary
Keeping up with user demand is a significant challenge for

IT departments. The traditional scale-up approach suffers
from significant limitations and cost issues that prevent it from
satisfying the ever-increasing workloads of a 24x7 online society.
The use of MPP and scale-out architectures is the solution, since
they can readily and non-disruptively apply additional compute
resources to meet any demand, and at a much lower cost. The
use of a data replication engine to share and maintain consistent
data between multiple systems enables scale-out application and
workload distributions across multiple compute nodes, which
provides the necessary scalability and availability to meet the
highest levels of user demand now and into the future.

Keith B. Evans works in Shadowbase Product Management. Mr. Evans earned
a BSc (Honors) in Combined Sciences from DeMontfort University, England.
He began his professional life as a software engineer at IBM UK Laboratories,
developing the CICS application server. He then moved to Digital Equipment
Corporation as a pre-sales specialist. In 1988, he emigrated to the U.S. and
took a position at Amdahl in Silicon Valley as a software architect, working
on transaction processing middleware. In 1992, Mr. Evans joined Tandem and
was the lead architect for its open TP application server program (NonStop
Tuxedo). After the Tandem mergers, he became a Distinguished Technolo-
gist with HP NonStop Enterprise Division (NED) and was involved with the
continuing development of middleware application infrastructures. In 2006,
he moved into a Product Manager position at NED, responsible for middleware
and business continuity software. Mr. Evans joined the Shadowbase Products
Group in 2012, working to develop the HPE and Gravic partnership, internal
processes, marketing communications, and the Shadowbase product roadmap

(in response to business and customer requirements). A
particular area of focus is the patented and newly released
Shadowbase synchronous replication technology for zero
data loss (ZDL) and data collision avoidance in active/active
architectures.

Paul J. Holenstein is Executive Vice President of Gravic, Inc.
He is responsible for the HPE Shadowbase suite of products.
The HPE Shadowbase replication engine is a high-speed,
uni-directional and bi-directional, homogeneous and
heterogeneous data replication engine that provides
advanced business continuity solutions as well as moves data
updates between enterprise systems in fractions of a second.
It also provides capabilities to integrate disparate operational
application information into real-time business intelligence
systems. Shadowbase Total Replication Solutions® provides
products to leverage this technology with proven implemen-
tations. HPE Shadowbase software is built by Gravic, and
globally sold and supported by HPE. Please contact your
local HPE account team for more information, or visit
https://www.ShadowbaseSoftware.com. To contact the
authors, please email: SBProductManagement@gravic.com.

HPE NonStop

Features. . .

HPE NonStop

Features

HPE NonStop

Features. . .

HPE NonStop

Features

BillingPhone
Management Billing

CCDDRRss

Phone
Management

Updates UpdatesCDRs CDRs

HPE NonStop

Uni-directional Data Replication

Bi-directional
Data Replication

Features

Uni-directional Data Replication

CDRs Features

Scale-Out
Query
Nodes

HPE NonStop

HPE NonStop

Features. . .

HPE NonStop

Features

HPE NonStop

Features. . .

HPE NonStop

Features

BillingPhone
Management Billing

CCDDRRss

Phone
Management

Updates UpdatesCDRs CDRs

HPE NonStop

Uni-directional Data Replication

Bi-directional
Data Replication

Features

Uni-directional Data Replication

CDRs Features

Scale-Out
Query
Nodes

HPE NonStop

CDRs

Figure 2: Telco HLR Scale-out Architecture
2 For additional information on active/active, sizzling-hot-takeover, and active/passive business continuity architectures, see the white paper, Choosing a Business Continuity
Solution to Match Your Business Availability Requirements.

https://www.ShadowbaseSoftware.com
mailto:SBProductManagement%40gravic.com?subject=
https://shadowbasesoftware.com/white-papers/2015/06/choosing-a-business-continuity-solution-to-match-your-business-availability-requirements-white-paper/
https://shadowbasesoftware.com/white-papers/2015/06/choosing-a-business-continuity-solution-to-match-your-business-availability-requirements-white-paper/

