Executive Summary

Shadowbase synchronous replication avoids data loss when a total system or datacenter failure occurs. Additionally, when running in an active/active architecture, Shadowbase synchronous replication eliminates data collisions.

This white paper reviews the Shadowbase synchronous replication features and rollout schedule and discusses the main issues with synchronous replication. It also suggests an approach to leveraging this new technology.

Please note that not all features are available in the first release, and delivery dates as well as specific (future) functionality is not guaranteed.
Table of Contents

Executive Summary ... 2

1 Business Continuity Fundamentals ... 4
 1.1 RPO and RTO .. 4
 1.2 Business Continuity Architecture ... 4
 1.3 Business Continuity Technology .. 5

2 The Benefits of Shadowbase Synchronous Replication ... 6

3 Shadowbase Synchronous Replication – Product Rollout ... 6

4 Shadowbase Synchronous Replication – Usage Considerations ... 7

 Shadowbase ZDL may add application latency .. 7
 Shadowbase ZDL may cause more concurrently active transactions .. 7
 Decide what to do if the target system is down (so-called Split Brain Syndrome) .. 8
 Decide how to handle in-doubt transactions .. 8
 Decide which transactions to include in synchronous replication ... 8
 Shadowbase ZDL may increase the number of source transactions that are aborted 8
 Decide how to handle transaction deadlocks (Shadowbase ZDL+ only) ... 8

5 Shadowbase Synchronous Replication – Deployment Procedures ... 8

 Step One – Create and tune a Shadowbase asynchronous replication environment ... 9
 Step Two – Create a Shadowbase synchronous replication environment test ... 9
 Step Three – Enable the Shadowbase synchronous replication environment test .. 9
 Step Four – Deploy into production! ... 9

6 Shadowbase Synchronous Replication – Current Restrictions ... 9

7 Shadowbase Synchronous Replication – Summary .. 9

International Partner Information .. 11

Gravic, Inc. Contact Information .. 11

Table of Figures

 Figure 1 – RPO and RTO Definition .. 4
 Figure 2 – RPO and RTO for Asynchronous vs. Synchronous Replication .. 6
 Figure 3 – Shadowbase Synchronous Replication Features by Release ... 7
1 Business Continuity Fundamentals

In order to fully explain the features of Shadowbase synchronous replication, it is first necessary to understand some basic business continuity concepts and the relationships between them.

1.1 RPO and RTO

The availability of a system can be characterized by two parameters – its Recovery Point Objective (RPO) and its Recovery Time Objective (RTO), as shown in Figure 1.

- RPO is the amount of data that an application may lose as a result of a system failure. It is the data updated between the time of the last backup (data taken off platform) and the point of failure. RPO is primarily influenced by the business continuity technology (asynchronous vs. synchronous replication).
- RTO is the amount of time that the system is down after a failure. It is the time from the point of failure to the time that the system is restored to an acceptable level of service. RTO is primarily influenced by the business continuity architecture (active/passive vs. active/active).

The goal of a business continuity solution is to minimize RPO (lose less data) and maximize RTO (recover faster).

![Figure 1 – RPO and RTO Definition](image)

1.2 Business Continuity Architecture

There are two primary business continuity data replication architectures: active/passive and active/active.

The primary attributes of an active/passive architecture are:\(^1\)
- A highly available system architecture comprising multiple geographically distributed systems
- All online (transactional) work takes place on a single system, the active system
- Change (updated) data is replicated from the active system to one or more passive systems (unidirectional replication)
- If the active system fails, a passive system takes over the online work (one passive system becomes the new active system, via a failover process)
 - All users are affected if a failover occurs and they must failover to the passive system
 - This process can be time-consuming and error-prone, leading to failover faults if the failover is not successful
 - Hence, this architecture is more risky than active/active
- Passive systems cannot be used for online processing (but can be used for read-only activities)
- Has an RTO > 0 (recovery takes time, typically minutes to hours)
- Often referred to as a disaster recovery architecture, due to the after-the-fact reconfiguration and recovery aspect

\(^1\)For the purposes of this document, this architecture includes Sizzling-Hot-Takeover (SZT), which is a form of active/passive architecture, but with a faster recovery time (RTO \(\rightarrow 0\)) and a reduced risk of failover faults. In all other respects, SZT provides the same characteristics as active/passive.
The primary attributes of an active/active architecture are:

- A continuously available system architecture comprising multiple geographically distributed systems
- Online (transactional) work takes place on multiple active systems (two or more), each with its own copy of the database
- Change (updated) data is replicated between all active systems (bi-directional replication)
- All nodes are known-working (i.e., fully operational and able to assume work of failed systems immediately)
- If an active system fails, other active systems continue processing the extra online workload (providing continuous application availability)
 - Fewer users are affected if a system fails
 - Users connected to the failed node are network switched to a surviving node that is already processing requests and is in a known-working state.
 - Hence, this architecture eliminates the failover risk that active/passive systems suffer due to potential failover faults
- All systems can be used for online processing, increasing overall capacity
- Has an RTO = 0 (i.e., recovery is instantaneous; some users see no outage event at all)
- Often referred to as a disaster tolerant architecture because application services survive any individual system’s failure

1.3 Business Continuity Technology

There are two primary business continuity data replication technologies: asynchronous and synchronous.

The primary attributes of asynchronous replication are:

- Replication activity is decoupled from the application making database changes on the source system
 1. Application does work and commits the database changes
 2. Data changes are read after-the-fact and replicated to the target (passive/backup) database
- Thus, there can be application data updates committed on the source which are not yet replicated to the backup (this time delay is called "replication latency"), and such data which has not yet been replicated can be lost in the event of a failure of the source system (RPO > 0)
- Data collisions\(^2\) are possible with active/active architectures; such collisions must either be avoided (e.g., by application or data partitioning), or identified and resolved if they do occur

The primary attributes of synchronous replication are:

- Replication activity is synchronized with the application making database changes on the source system
 1. Application does work and calls to commit the transaction
 2. Changes are not committed on the source system until those changes have been replicated to the backup system
- Thus, there cannot be application data updates committed on the source which are not yet replicated to the backup, and no data is lost in the event of a failure of the source system (RPO = 0)
- Data collisions are not possible with active/active architectures; data collisions become transaction deadlocks, which are much less serious and more easily handled internally by the data replication engine

Figure 2 graphically illustrates the relationship between data replication architecture/technology and RTO/RPO. As is shown, an active/active architecture has the best RTO, and synchronous replication technology has the best RPO.

\(^2\)Data collisions occur in asynchronous active/active architectures when the same database record is updated simultaneously on two (or more) systems in the configuration. The updates are then replicated to the other system(s), overwriting the original changes. Thus, all database copies are made inconsistent and incorrect. Data collisions cannot occur with active/passive architectures.
2 The Benefits of Shadowbase Synchronous Replication

Asynchronous replication represents state-of-the-art technology, is satisfactory for many applications, and offers excellent levels of protection against outages (especially in SZT and active/active configurations).

However, it has limitations:

- Data loss (in active/passive, SZT, and active/active modes)
- May require application/data partitioning (in active/active mode), which may result in imbalanced load across systems
- May incur data collisions (in active/active mode)

![Figure 2 – RPO and RTO for Asynchronous vs. Synchronous Replication](image)

Asynchronous replication is insufficient for the most critical applications – those for which any lost data or downtime will incur unacceptable levels of business cost. For such applications, Shadowbase synchronous replication resolves these issues.

Synchronous replication provides the following benefits compared to asynchronous replication:

- Zero data loss (RPO = 0)
- No possibility of data collisions (in active/active mode)
- No need for application/data partitioning (in active/active mode) because data collisions are avoided

Therefore, a business continuity replication solution now exists for those applications where no data loss can be tolerated, and for those applications that previously could not run in an active/active configuration (because partitioning was not possible and data collisions could not be tolerated or resolved). Shadowbase synchronous replication enables the minimum (best) possible values for RPO and RTO for the widest possible range of applications. An implementation using an active/active architecture with synchronous replication is the best business continuity solution available today.³

3 Shadowbase Synchronous Replication – Product Rollout

Shadowbase synchronous replication capabilities will be incrementally released as follows:⁴

1. Shadowbase Zero Data Loss Release 1 (Shadowbase ZDL R1)
 - Available now
 - Supports zero data loss for active/passive system architectures (uni-directional)

⁴Specifications are subject to change without notice, and delivery dates/timeframes are not guaranteed. Purchasing decisions should not be made based on this material.
• Built on the tried-and-true Shadowbase asynchronous technology platform
• SZT and active/active architectures are not supported

2. **Shadowbase ZDL R2 (future release)**
• Adds support for zero data loss for SZT and active/active architectures
• Data collisions will still be possible in active/active environments; existing Shadowbase data collision identification and resolution solutions can be used (if needed)

3. **Shadowbase ZDL+ (future release)**
• Supports zero data loss for active/passive, SZT, and active/active architectures
• Adds support for automatic data collision elimination in active/active architectures

Figure 3 illustrates the capabilities of each sequential Shadowbase synchronous replication release.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Shadowbase ZDL R1</th>
<th>Shadowbase ZDL R2</th>
<th>Shadowbase ZDL+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero data loss?</td>
<td>A/P: Yes</td>
<td>A/P: Yes</td>
<td>A/P: Yes</td>
</tr>
<tr>
<td>- SZT: Not Supported</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- A/A: Not Supported</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data Collisions possible in Active/Active environment?</td>
<td>N/A</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

Figure 3 – Shadowbase Synchronous Replication Features by Release

4 **Shadowbase Synchronous Replication – Usage Considerations**

The following characteristics of Shadowbase synchronous replication need to be considered before deployment.

Shadowbase ZDL may add application latency

Application latency is defined as the time between the application committing the transaction (e.g., calling TMF EndTransaction on an HPE NonStop system) and the response being received (transaction committed or aborted). Because replication of the application’s data changes to a backup system have to be completed and confirmed before the application’s transaction is committed, additional overhead may occur, resulting in a delay (i.e., an increase in application latency). Otherwise, synchronous replication does not incur any additional overhead beyond regular asynchronous replication.5

Shadowbase ZDL includes an option called *Synchronous Monitor Mode*, which enables users to measure the potential application latency without actually incurring any delay. (The data is still replicated asynchronously while the replication engine monitors what the effects would be if synchronous replication were in use.) Synchronous monitor mode should be used to evaluate the effects that synchronous replication will have on your application environment in order to determine if additional system tuning is required before deploying in production.

Shadowbase ZDL may cause more concurrently active transactions

Because transactions may take slightly longer to complete, there may be more concurrently active transactions. When deploying synchronous replication, the source system must therefore be able to scale to handle more simultaneous transactions while still achieving the same throughput (in transactions-per-second, or TPS).

In practice, the source system must have sufficient resource headroom to accommodate more CPU and TMF activity. For example, in a classic Pathway environment, you may need to run more instances of the application server class processes to achieve the same transaction throughput rate.6

5 It is only at transaction commit time that synchronization occurs; prior to that point, application data changes are replicated asynchronously with no impact to the application. This patented Shadowbase innovation is known as *coordinated commits*.
6 Applications that scale well are a basic tenet of properly designed transaction processing systems. Synchronous replication leverages this characteristic to achieve the same overall processing rate even though each individual transaction may take longer to complete. Therefore, applications that cannot scale well may not perform well when deploying synchronous replication.
Decide what to do if the target system is down (so-called Split Brain Syndrome)

If the source system is unable to communicate with the target system, it is not possible to guarantee synchronous replication. Therefore, it must be decided what action to take in this circumstance. Options include:

- Fall back to asynchronous replication mode (maximizes availability at the expense of possible data loss should a failure occur). Also, if running in active/active mode and data collisions are a concern, failover all users to a single system to avoid the collisions.
- Stop application processing of new transactions (maximizes reliability, or zero data loss, at the expense of application service availability)
- Enter Pause Mode – to wait and decide an appropriate action

Decide how to handle in-doubt transactions

An in-doubt transaction is one that has been fully processed on the source environment (i.e., the application has called commit), the replication engine has fully delivered all changes to the target environment, and has also voted to commit the source transaction. The transaction becomes in-doubt if the replication engine does not receive a final directive that the source transaction committed or aborted (e.g., the communication line between the source and target goes down).

In this case, Shadowbase replication on the target system does not know whether the transaction was committed or aborted by TMF at the source. By default, it will hold in-doubt transactions, awaiting user direction. There are also configuration options to unilaterally commit or abort in-doubt transactions.

Decide which transactions to include in synchronous replication

Not all data is created equal; some is more valuable than others. Therefore, Shadowbase replication provides means to select which data is replicated synchronously vs. asynchronously. It is possible to include all transactions or to filter based on user requirements (e.g., by application program name, process name, user id, etc.). In a future release, APIs will be provided to programmatically control which transactions are replicated synchronously on a per transaction basis. In addition, Shadowbase configuration options allow the selection of individual files and/or tables to be replicated synchronously or asynchronously.

Shadowbase ZDL may increase the number of source transactions that are aborted

In an active/passive synchronous architecture, an increase in the number of source transactions that are aborted will occur if Shadowbase ZDL cannot perform synchronous processing and if the customer has chosen “maximum reliability” mode. In this case, a split-brain condition has arisen, and until the situation is resolved, all new transactions will be aborted.

In an active/active synchronous architecture, an increase in the number of source transactions that are aborted will also occur if Shadowbase replication encounters data collisions. In this case, Shadowbase ZDL will abort one of the transactions involved to avoid the data collision.

In either architecture, when an aborted transaction arises, the solution is to resubmit the aborted request/transaction. This process is similar to the processing for any application transaction that is automatically aborted by TMF (for reasons of timeout, certain media failures, deadlock, etc.).

Decide how to handle transaction deadlocks (Shadowbase ZDL+ only)

With Shadowbase ZDL+, transaction deadlocks are typically caused by data collisions that were avoided. This condition is very similar to when an application hits a deadlock during its normal processing. Applications must be properly written to handle waits for database locks as well as TMF EndTransaction errors (aborts) that result from synchronous replication lock collisions. A typical response is to backoff/wait and retry the request/transaction later (i.e., resubmit the request).

5 Shadowbase Synchronous Replication – Deployment Procedures

Before putting a Shadowbase synchronous replication environment into production, the possible impacts should be managed by following a phased implementation approach.
Step One – Create and tune a Shadowbase asynchronous replication environment

Shadowbase synchronous replication is built on the Shadowbase asynchronous technology platform. Hence, the first step in deploying Shadowbase synchronous replication is to create and implement a Shadowbase asynchronous replication environment for the data that you eventually want to replicate synchronously. Then for performance, tune this Shadowbase asynchronous replication environment. Also, become familiar with Shadowbase software, including monitoring and managing, problem resolution, failures and restarts, failovers, etc. We are available for Professional Services to make sure your project runs smoothly.

Step Two – Create a Shadowbase synchronous replication environment test

Once it is running to your requirements, create a copy of your Shadowbase asynchronous replication environment in a test (crash-and-burn) environment. Configure the synchronous aspects of this test environment in Shadowbase ZDL *Synchronous Monitor Mode*. Synchronous Monitor Mode will give you experience with the impact of synchronous replication on the application’s transactions *without actually performing synchronous replication* – data is still replicated asynchronously (no actual application latency is incurred in this mode). Test in this mode, tune (MEASURE, etc.) as necessary, study the projected application latency, and share this information with us for tuning pointers.

Step Three – Enable the Shadowbase synchronous replication environment test

Turn on Shadowbase synchronous replication (i.e., exit Synchronous Monitor Mode) and monitor the performance (throughput) and application latency under various loads (including peak). Tune the system as necessary. Be sure to test failure and recovery modes. Report any issues.

Step Four – Deploy into production!

Once all testing of the Shadowbase synchronous replication environment is complete and the environment is performing acceptably, put the system into production.

6 Shadowbase Synchronous Replication – Current Restrictions

There are some current restrictions on the usage of Shadowbase synchronous replication which must be considered:

- Supported platforms – HPE NonStop servers only, J/L-Series including both NonStop X and Virtualized NonStop (note that the NonStop H-Series servers are not supported)
- SQL/MX – Not supported in synchronous mode (however, asynchronous mode is fully supported); adding support is in-plan (check with Gravic for availability)
- Dependencies – TMF SPR T8606^A^ (or newer) must be installed (included in L17.02 and later RVUs)
- Interoperability – NonStop to NonStop platforms only; heterogeneous architectures (for example, NonStop to Other Servers) are under consideration (discuss your needs with Gravic)
- DDL operations – Create table, drop table, etc. are not currently supported by Shadowbase ZDL. Manually implement the command(s) on each side as the workaround.

7 Shadowbase Synchronous Replication – Summary

Shadowbase synchronous replication resolves the key issues with asynchronous replication:

- No data loss (RPO = 0) on source system failure
- No data collisions when running an active/active environment

By eliminating data collisions, active/active solutions for applications that were previously prohibited are now possible; there is no need for application/data partitioning or data collision detection and resolution. Removing this need also allows for optimal load-balancing across systems using a “route request anywhere” architecture, resulting in better system capacity utilization.

[^Contact Gravic](Gravic%2C%20Inc.%20White%20Paper): for future availability of these capabilities in Shadowbase ZDL.
In a nutshell, by removing these restrictions, the minimum possible outage and data loss for the widest possible range of applications is now a reality. Shadowbase synchronous replication is the only choice for the most business critical applications where even milliseconds of lost data or downtime is unacceptable. Shadowbase ZDL and Shadowbase ZDL+ provide unique, differentiating product capabilities for the HPE NonStop market!
International Partner Information

Global

Hewlett Packard Enterprise
6280 America Center Drive
San Jose, CA 95002
USA
Tel: +1.800.607.3567
www.hpe.com

Japan

High Availability Systems Co. Ltd
MS Shibaura Bldg.
4-13-23 Shibaura
Minato-ku, Tokyo 108-0023
Japan
Tel: +81 3 5730 8870
Fax: +81 3 5730 8629
www.ha-sys.co.jp

Gravic, Inc. Contact Information

17 General Warren Blvd.
Malvern, PA 19355-1245
USA
Tel: +1.610.647.6250
Fax: +1.610.647.7958
www.shadowbasesoftware.com
Email Sales: shadowbase@gravic.com
Email Support: sbsupport@gravic.com

Hewlett Packard Enterprise Business Partner Information

Hewlett Packard Enterprise directly sells and supports Shadowbase Solutions under the name **HPE Shadowbase**. For more information, please contact your local HPE account team or visit our website.

Copyright and Trademark Information

This document is Copyright © 2017 by Gravic, Inc. Gravic, Shadowbase and Total Replication Solutions are registered trademarks of Gravic, Inc. All other brand and product names are the trademarks or registered trademarks of their respective owners. Specifications subject to change without notice.