
18 Mar – Apr 2017

infected with malware of some sort.
It also is possible (though unlikely) that the sub-system

hardware or firmware could have been modified during
manufacture to provide malicious results. In the most important
mission-critical cases involving financial or health decisions or
crucial process control sub-systems, care should even be taken
that there is no common manufacturing point in the sub-systems,
such as the printed-circuit masks being fabricated by the same
company.

One challenge with malware is that it may be too late by the
time the malware is detected. The system may appear to be
operating properly, but the bad data that it is producing due to the
malware infection may not be discovered for days, weeks, or even
months, if at all.

An interesting example occurred several years ago in a
banking application that calculated interest payments for banking
customers. Typically, an interest calculation results in fractions
of a penny. For instance, 3% of $167.58 is $5.0274. The customer
is credited with an interest payment of $5.02. The remainder,
$0.0074, is called overage. It is credited to the bank itself.

However, a hacker was able to install malware that took a
portion of the overage and credited it to his account. The amount
for each transaction was so small that it wasn’t noticeable; but
over hundreds of thousands of transactions, it amounted to a tidy
sum. The malware was not discovered until the next annual audit
of the system.

Running the sub-system in a Validation Configuration may
expose these types of errors and corruption.

Comparing Results
Several methods exist with which the results of independent

sub-systems can be compared. Two of those methods are Logical
Synchronization Units (LSUs) and a new scheme that operates at
the transaction level.

Logical Synchronization Unit (LSU)
An LSU, such as that used in the HPE Itanium S-series

NonStop models, is a hardware device that compares two or more

Improving Reliability
via Redundant

Processing
Dr. Bruce D. Holenstein >> President & CEO >> Gravic, Inc.

Dr. Bill Highleyman >> Managing Editor >> Availability Digest

Paul J. Holenstein >> Executive Vice President >> Gravic, Inc.

The three pillars of mission-critical systems are
summarized by the acronym “RAS.” It stands for
Reliability, Availability, and Scalability. Reliability
is the probability that the system will produce

correct outputs. Availability is the probability that the system
is operational. Scalability is the ability of the system to handle
different size loads in a predictable manner.1

What is the difference between reliability and availability? If
a system is available but is generating erroneous outputs, it is not
reliable. Alternatively, if a system is generating reliable outputs
while operational, but it is not always operational, then it is not
always available.

Why would a system produce incorrect data? The problem
could be a hardware fault, a firmware bug, or a software error. Bad
data also can be generated if the system has been infected with
malware. Depending upon its design, malware can corrupt any
operation within the system. Malware is generally thought to be a
software issue. However, malware also can be introduced into the
hardware or the firmware of a system during its manufacture.

How can we determine if a system is malfunctioning before
damage to the end user or environment takes place? One answer
is to use a “Validation Configuration,” a redundant system in
which two or more sub-systems are running in parallel and
are processing the same requests, presumably arriving at the
same results. Preferably, the sub-systems are from different
manufacturers to ensure they both do not contain the same faults,
if any. Their results (or even intermediate processing states) are
compared. As long as the results agree, it safely can be assumed
that the sub-systems are operating properly. If one (or both) sub-
systems have been infected with malware, the results will not
agree; and the sub-systems should be taken out of service and
checked to determine the problem.

Why Would There Be an Error?
There are several reasons why a sub-system that appears

to be operating properly could be delivering erroneous results.
Common reasons include a piece of hardware that is producing
memory or disk read errors or a sub-system that has been

1 Originally, IBM called the “S” Serviceability, which is the speed with which a system can be repaired. However, Serviceability is characterized by the mean time to repair and is already incorporated
 into the term Availability.

19www.connect-community.org

Transaction Indicia Matching
The authors’ ongoing research focuses on improving the

data reliability of transaction-processing systems at the
transaction level. The premise is that the same request fed into
two independent sub-systems running the same application
must produce the same transactional changes to the database,
or else there is a reliability problem. The method, which we call
“transaction indicia matching (TIM),” is described below and
detects reliability problems, such as those caused by malware
infections, operator malfeasance, or hardware or software errors.

The TIM method operates by matching “indicia” generated
locally by the Validation Configuration. Indicia are measures
of the sub-system state at any particular point in time and are
primarily produced at the end of the DML (data manipulation
language) operations made to a database. Indicia are calculated by
a trusted piece of software or hardware called an “Indicia Engine”
and may be arbitrarily complex. For instance, in a transaction-
processing system, indicia may be the full set of DML changes
that were made to the database by a transaction; or they may be a
hash sum of the changes that were made to the database.

With two (or more) sub-systems running in parallel, the indicia
calculated by each sub-system are compared in a Validation
Configuration to ensure all sub-systems are operating correctly.
It is optimal if the sub-systems are manufactured to the same
specifications by different manufacturers and that no common
point of manufacture exists (such as integrated circuit masks).
This prevents a design error or a malware error maliciously
introduced during manufacture from appearing in both sub-
systems. The sub-systems are running the same application,
preferably implemented by different software teams.

The indicia calculated by the Indicia Engines in each sub-
system are compared. One means of transactional indicia
matching is via direct communications between the Indicia
Engines, as shown in Figure 3. Two sub-systems (1) and (2) are
running versions of the same application (3). Each application
version has an Indicia Engine attached or built into it (4).

At specific synchronization points, each application pauses;
and each Indicia Engine calculates an indicium representing its
application’s current state. The Indicia Engines are connected via
a communication channel (5, 6). They exchange their calculated
indicia (7) and compare their own with that of the other sub-
system. If the indicia agree, the Indicia Engines release the
applications; and processing continues. If they don’t agree, the
applications are halted; and an error is posted.

In a DMR system, in the event of an error, both sub-systems
can be shut down and tested. In a TMR system, the faulty sub-
system is shut down and processing continues.

A Validation Configuration implementation that is designed
to fit existing applications is shown in Figure 4. The Validation
Configuration comprises two sub-system nodes (1, 2). An Indicia
Engine is attached to each application that calculates appropriate
indicia at one or more synchronization points within the
application. The Indicia Engines communicate via a bidirectional
synchronous data replication engine such as the Shadowbase®
data replication engine from Gravic, Inc.

An application (3) sends an identical request (4) to both sub-

values to ensure that they match. An LSU can be used to compare
the outputs of two sub-systems (a DMR LSU – dual modular
redundancy) or three or more sub-systems (a TMR LSU – triple
modular redundancy). If all outputs agree, the result is published
by the LSU. See Figure 1.

In a DMR LSU, if the results do not agree, an error is returned
by the LSU. In a TMR LSU, if one of the results is different, that
result is ignored; and the majority result is returned. An error is
generated identifying the sub-system that produced the erroneous
output, and it can automatically be taken out of service.

An LSU was previously used by NASA for the space shuttle
to compare the outputs of four independent computers (1, 2, 3,
4), as shown in Figure 2. The computers exchanged interprocess
messages over four interprocessor synchronization buses (5, 6, 7,
8). The outputs of all four computers were sent to a voting LSU (9).
The LSU outvoted the results of any failed computer and sent the
correct output (the one generated by the majority of the computers)
to the appropriate actuator in the space shuttle. The astronauts were
instructed to turn off a computer that was generating false outputs.

An LSU can face several challenges:
•	 It represents a single point of failure.
•	 The LSU itself needs to be validated that it is free of

infection.
•	 It must be simple in order to minimize the probability of

failure.
•	 Therefore, it can vote only on simple inputs.
•	 If an error is caused by a malicious hardware, firmware,

or software implementation, an LSU may not detect it
because the same error will exist on all sub-systems.

•	 A major class of systems is transaction-processing
systems, in which the different sub-systems and/or CPUs
cannot operate in lock-step, and the outputs are thus not
directly comparable.

20 Mar – Apr 2017

a TMR system, the sub-system that doesn’t match with the other
sub-systems is shut down; and processing continues with the
operational sub-systems.

High Availability Transaction-Processing Systems
In transaction-processing systems, dual sub-system nodes (1,

2) often are deployed to achieve high availability (see Figure 5).
Should one sub-system fail, all transactions can be sent to the
surviving sub-system for processing. Advantage can be taken of
this system redundancy to construct a Validation Configuration
to detect data-reliability problems. The nodes exchange indicia
at appropriate synchronization points to ensure that nothing has
corrupted processing.

As shown in Figure 5, an application (3) sends a transaction
(4) to both nodes in the Validation Configuration. The transaction-
processing applications in each node make changes to the
database at its node. User exits in the data replication engine

systems. Each sub-system calculates indicia at the one or more
synchronization points and sends its calculated indicia to the
other sub-system via the bidirectional data replication engine
(5). As an example, the indicia can be a hash sum of the changes
to be made to the database by a transaction. The hash sum can
be calculated by a User Exit2 in the data replication engine. The
indicia received from the remote sub-system are compared to the
indicia calculated by the receiving sub-system.

At the end of request processing, each sub-system informs the
other sub-system as to the results of its indicia matching (6). If
all of the indicia have matched properly in both sub-systems, the
result of the request processing is accepted by both sub-systems.
In this case, the Indicia Engine at each node instructs the data
replication engine to vote in favor of transaction commitment. If
there is a mismatch in the calculated indicia by either sub-system,
an error is posted and the transactions are aborted. In a DMR
system, both sub-systems should be shut down and analyzed. In

UPDATE YOUR
PROFILE TODAY!

 http://bit.ly/2jKRaph

www.connect-community.org

2 A User Exit is a customized piece of logic that can be added to the Shadowbase data replication engine to perform selected processing on the various transaction components.

21www.connect-community.org

Certifying a New Sub-system
The TIM approach can be used to certify the reliability of a new

sub-system. The new sub-system is put into operation along with
a known and trusted sub-system. As the sub-systems process
requests, they both calculate indicia. The new sub-system sends
its indicia to the trusted sub-system, which compares them to its
own indicia.

If the indicia should not match, the new sub-system can be
taken out of service for further diagnostics. The error could be in
the hardware design, the firmware, or the software. Alternatively,
the error could be caused by malicious malware that has infected
the new sub-system.

Summary
The proper operation of a sub-system can be verified via a

Validation Configuration that compares the operation of one sub-
system to another sub-system running the same applications.
Verification is accomplished by comparing indicia generated
by the two sub-systems at specific synchronization points. If
the indicia agree, the sub-systems are operating properly. If the
indicia do not agree, one of the sub-systems is misbehaving.

Comparing sub-system outputs via TIM is a significant
improvement over the use of an LSU for validation purposes in a
transaction processing system because of the set of challenges
faced by an LSU, not the least of which is that it represents a
single point of failure in the system. There is no single point of
failure when using transaction indicia matching.

Our research shows that TIM can be implemented with a
synchronous data replication engine such as Shadowbase from
Gravic, Inc. We would appreciate feedback if you are interested in
exploring this concept with us for your real-world application.

serve the purpose of the Indicia Engines to calculate the indicia.
The calculated indicia is exchanged between the two nodes
(5) via data replication, and each node compares its calculated
indicia with that of the other node. If both nodes agree with the
indicia calculated at the other node, the transaction is committed.
Otherwise, the transaction is aborted.

If the Shadowbase data replication engine is employed, the
transaction can be committed (or aborted) via the Shadowbase
coordinated-commit3 facility (6). Coordinated commits work in this
case as follows. If a node’s indicia have matched properly with the
indicia sent by the remote node, each node will send a token to the
other node to say that it is ready to commit its transaction. Each
node will respond to the token with an indication that it is ready to
commit the transaction. When a node receives a confirmation from
the other sub-system, it commits the transaction. If either node
cannot do so, it instead will send an abort request to the other
sub-system. In this case, both nodes will abort their transaction.

Data replication used in this way to achieve both high-
availability and data reliability has another important benefit if
one of the nodes is taken off-line due a problem. In this case, the
data replication tool will queue the changes on the running node
and be able to forward them seamlessly to the recovered node
once it has been brought back on-line (7).

Encryption
As an option, the indicia being exchanged between the systems

can be encrypted. This can prevent a “man-in-the-middle” attack, in
which an attacker can modify an indicium that does not match to one
that matches in order to mask a malware infection. Alternatively, the
attacker can change an indicium that matches to one that does not
match to cause a sub-system denial of service outage.

Dr. Bruce D. Holenstein, President and CEO. Dr. Holenstein leads all aspects of Gravic, Inc. as President and CEO. He started company operations with his brother,
Paul, in 1980, and is presently leading the company through the changes needed to accommodate significant future growth. His technical fields of expertise
include algorithms, mathematical modeling, availability architectures, data replication, pattern recognition systems, process control and turnkey software
development. Dr. Holenstein is a well-known author of articles and books on high availability systems. He received his BSEE from Bucknell University and his Ph.D.
in Astronomy and Astrophysics from the University of Pennsylvania.

Dr. Bill Highleyman is the Managing Editor of The Availability Digest (www.availabilitydigest.com), a monthly, online publication and a resource of information on high-
and continuous availability topics. His years of experience in the design and implementation of mission-critical systems have made him a popular seminar speaker
and a sought-after technical writer. Dr. Highleyman is a past chairman of ITUG, the former HP NonStop Users’ Group, the holder of numerous U.S. patents, the author
of Performance Analysis of Transaction Processing Systems, and the co-author of the three-volume series, Breaking the Availability Barrier.

Paul J. Holenstein is Executive Vice President, Gravic, Inc. He has direct responsibility for the Gravic, Inc. Shadowbase Products Group and is a Senior Fellow at Gravic
Labs, the company’s intellectual property group. He has previously held various positions in technology consulting companies, from software engineer through
technical management to business development, beginning his career as a Tandem (HPE NonStop) developer in 1980. His technical areas of expertise include high
availability designs and architectures, data replication technologies, heterogeneous application and data integration, and communications and performance analysis.
Mr. Holenstein holds many patents in the field of data replication and synchronization, writes extensively on high and continuous availability topics, and co-authored
Breaking the Availability Barrier, a three-volume book series. He received his BSCE from Bucknell University, a MSCS from Villanova University, and is an HPE Master
Accredited Systems Engineer (MASE). To contact the author, please email: SBProductManagement@gravic.com . Hewlett Packard Enterprise directly sells and
supports HPE Shadowbase Solutions (www.ShadowbaseSoftware.com); please contact your local HPE account team.

NonStop Resources
Watch for a special advertising section coming soon...

3 Coordinated Commits are a special form of processing that allows the results of two or more transactions to be coordinated to the same conclusion before they complete. Refer to the Breaking the
Availability Barrier book series for more information.

