
32 Sept – Oct 2016

Figure 1 – Data Replication

The source database is hosted by the source node and the target
database is hosted by the target node. The two nodes comprise the
distributed data processing system. As an application makes changes
(inserts, updates, and deletes) to its local source database, these changes
are immediately sent by some means to the target system, where they
are applied to the target database, which typically resides on another
independent node. Because the target database is kept synchronized
with the source database, if the source system becomes unavailable,
processing can continue using the target system, maintaining service
availability. The means by which the data is replicated between the disks
on the source system and the disks on the target system falls into one of
two categories, hardware replication or software replication.

Hardware Data Replication
Hardware replication is usually implemented in the storage

system controller, which replicates disk blocks to a target disk as they
are written to the source disk (Figure 2). If a failure occurs in the

Hardware vs Software Data
Replication for Business Continuity

Keith Evans >> Shadowbase Product Management >> Gravic Inc.

Introduction
Today, businesses with access to real-time online transactional data

have a competitive advantage. To gain the greatest benefit from this data
it must be current and available at any given time. The counter to this
advantage is that the inability to access or update current data denies
service to users and carries significant business costs, possibly measured
in many thousands of dollars per second. These requirements necessitate
an IT infrastructure that is continuously available.

Business continuity encompasses activities that an enterprise
performs to maintain timeliness, consistency, and availability of
its data, operations, and services. Application availability depends
upon the ability of IT services to survive any fault, whether it is
a server failure, a network fault, or a data center disaster. Data
availability depends on the existence of up-to-date backup data
copies. Data replication is an enabling technology for achieving
high or continuous availability for application services and the
timely backup of important data. There are two primary data
replication technologies, hardware replication and software
replication. Each of these technologies, and the differences between
them, are discussed in this article.

Data Replication – The Fundamental Force Behind
Business Continuity

 Improving availability via data replication depends upon
having at least two nodes (or disks), each capable of hosting data.
As shown in Figure 1, the purpose of data replication is to keep
target data synchronized in real-time with source data that is being
updated by a source application.

33www.connect-community.org

replication typically sends blocks of changes to the target. In
some cases, the controller compresses data to only the changed
bytes. In other cases, entire data blocks are sent, which requires
high communication bandwidth and co-location of source and
target disks. Both hardware replication techniques typically do not
replicate current data locking protocols nor transaction end-state
information (commits and aborts). Hence, the target database
typically contains many “dirty records” and cannot be used by
applications, even for read-only activities.

Hardware replication generally requires identical storage
technology, including the version level, to be used at both the
source and the target. This requirement means it cannot be used to
integrate diverse systems and applications, to eliminate islands of
information and implement new business services. Further, if any
component is required to be upgraded (for example, to fix a fault),
all components must be upgraded at the same time (or else the fault
would bring down both components).

Hardware replication also typically does not allow the target
database to be opened by applications at the same time that replication
is taking place, thus preventing the use of hardware replication for
active/active systems1, or for enabling read-only activities to be
performed on a backup system. Consequently, hardware replication is
not an option in order to achieve recovery times measured in seconds
or minutes, or for maximizing system utilization.

Another issue with hardware replication is that the maximum
distance between the source and target disks is limited. Having the
target disk insufficiently distant from the source disk increases the
chance that a local area incident (e.g., a flood) will affect both the
source and target disks and prevent a timely recovery.

Software Data Replication
Software replication may take place by: event, transaction

(several events all treated as a single unit of work), request, or log-
shipping (which is discussed further in the following section):

•	 Event replication replicates data-manipulation language (DML)
events as they occur. DML events include insert, update, and
delete operations. In some cases, event replication may also
replicate data-definition language (DDL) operations that affect
the database’s data structure and schema.

•	 Transaction replication replicates entire transactions, either one
operation at a time as they occur, or as a group of operations
once the transaction has committed on the source. When
replayed at the target, the transaction is either committed or, if
the entire transaction is not received, is aborted.

•	 Request replication replicates the entire application request,
which is reprocessed in its entirety by the application
running on the target system.

In this article we are concerned about achieving the highest
levels of replication performance, application service availability,
data consistency, and minimizing data loss when a failure occurs.
Of the various modes of software replication, transaction replication
best meets these requirements. In transaction-level software
replication, a data replication engine running on the source and
target systems performs the replication task. The data replication
engine is driven by a queue of database change events which are
read on the source system and sent to the target system and applied

source system to which the source disk is attached, a backup system
to which the target disk is attached can take over processing.

Figure 2 – Hardware Replication – On Disk Write

However, disk blocks are typically only written to disk when
they are flushed from the disk’s cache. There is no logical order to
the disk-write sequence since other factors control cache flushing.
The recent least used disk blocks are flushed to disk when cache
space is needed for new blocks that must be read from disk. As a
consequence: the target disk is not guaranteed to be consistent with
the source disk; target disk blocks may be partially split; indices may
exist without the rows or records to which they refer; and children
may exist without parents. The data is consistent in cache, but the
target disk image is generally useless. As a result, applications cannot
use the target database for any application processing. Because of this
inconsistency, if the source node fails, a lengthy recovery process is
required to bring the target database into a useful, consistent state,
which extends the period of service unavailability. Additionally, if
synchronous replication is used, large amounts of data may be lost
due to a source-system failure, as any data still in cache will not have
been flushed nor replicated at the time of failure.

Figure 3 – Hardware Replication – On Cache Write

Some storage controllers replicate changes as they are made to a
disk’s cache regardless of whether or not they have been physically
written to the source disk (Figure 3). The replication of cache
updates ensures the logical consistency of the target database, since
changes are replicated to the target system as soon as they are made
at the source system. If synchronous replication is used, no data
will be lost following a source system failure. However, due to other
limitations (as described next), the target database may still not be
useable by applications while replication is occurring.

Whether based on disk flushing or cache updates, hardware
1 Active/active systems spread the processing load over multiple environments, allowing for instantaneous takeover when one of the systems or environments fails, and lead to the highest Recover
Time Objective (RTO) attainable. Active/active architectures are referred to as continuously available and disaster tolerant, and achieve the best RTO possible when implemented with transactional soft-
ware data replication. See the Gravic white paper, Choosing a Business Continuity Solution to Meet Your Availability Requirements (http://shadowbasesoftware.com/white-papers/) for more information.

34 Sept – Oct 2016

Figure 5 – Synchronous Software Replication using Coordinated Commits

Software Data Replication – Log-Shipping

Figure 6 – Software Replication – Log-Shipping

Log-shipping (Figure 6) is a form of software data replication that
operates more like hardware replication. Log-shipping sends the entire
source database change log periodically to a target system. On the target
system this change log is read and the data and index blocks are applied
against the physical database structure, which is analogous to how
hardware-based data replication works; it also has all of the same issues.

Compared to software transaction-based data replication, log-
shipping has a higher amount of data loss on failure (a higher Recovery
Point Objective, or RPO), because the target database is only current
to the point of the most recent log-ship, which may only be when the
source log file has been closed. Any subsequent changes on the source
system are lost. Log-shipping data is usually applied to the target as
index and data blocks of changes, which results in an inconsistent
target database, rendering it practically useless while replication is
taking place, as is the case with hardware replication. Even if the
change events are extracted from the log and applied to the target,
source transaction consistency is typically not maintained; events are
applied without regard to source transaction bracketing. The result is
an inconsistent and unusable target database.

Comparison of Hardware vs Software Data
Replication

Although hardware replication (including software-based
log-shipping) appears to offer a simple and cost-effective
approach to maintaining data and service availability, it is
often not a good business continuity solution for the reasons
previously discussed. To summarize:

•	 Since there is no concept of transaction boundaries,
database consistency or referential integrity, hardware
replication cannot be used for active/active systems (i.e., it
cannot provide continuous availability).

to its database. This form of replication is able to replicate at the
transaction level because transaction control information is also
replicated, and updates are applied to the target as transactions.
That is, either all updates in a transaction are applied, or none
are, thereby preserving source transaction consistency at the
target database. In addition, the updates are applied to the
target system in the same order as they were generated on the
source system. As a result, the target database can always satisfy
all of the requirements of referential integrity and database
consistency, and consequently can be used by other applications
for both read and write operations (the latter in an active/active
architecture).

Unlike hardware replication, software replication works between
heterogeneous systems and databases. This capability enables the
integration of diverse applications and data, elimination of islands
of information, and implementation of new business services, such
as real-time business intelligence.

As with hardware replication, software replication may be
asynchronous or synchronous. An asynchronous data replication
engine is completely transparent to the applications running in the
source node. As shown in Figure 4, it extracts changes made to the
source database from a database change queue2 and sends them
after-the-fact to the target database.

Figure 4 – Asynchronous Software Replication Engine

Unlike some forms of hardware replication (disk flushing),
synchronous software replication guarantees that no data will be
lost after a failure. Using a technique known as “coordinated
commits”3 (Figure 5), synchronous software replication makes
no permanent changes to any database copy unless these
changes can be applied to both source and target database
copies. With coordinated commits, the replication engine
participates in the source application’s transaction, and at
commit time, it votes “yes” or “no” dependent upon whether
all the updates in the transaction have been replicated to the
target system. If “no,” then the source transaction aborts. It is
guaranteed that all participating databases, source and target,
received and/or applied the same updates, or none did; therefore
no data will be lost in the event of a source system outage.
Another major benefit of coordinated commit technology is that
while it guarantees no committed data will be lost, impacts to
application throughput are also minimized as synchronization
only occurs at transaction commit time, and not on every
database change event.

2 A database change queue is a DBMS-maintained list of transactional insert, update, and delete operations that have been performed by applications against the database.
3 For more information on synchronous replication and coordinated commits, see Dr. Bill Highleyman, Paul J. Holenstein, Dr. Bruce Holenstein, Chapter 4 – Synchronous Replication,
 Breaking the Availability Barrier: Survivable Systems for Enterprise Computing, AuthorHouse; 2004.

35www.connect-community.org

Summary
On the surface, hardware data replication appears to offer a

simple and cost-effective solution to the problem of maintaining data
and service availability in the event of a system outage. Scratch the
surface however, and it becomes clear that hardware data replication
suffers from many significant issues which make it unsuitable for this
task for mission-critical applications. Simply put, the likelihood of a
timely recovery from an outage with minimal data loss is very low,
and perhaps not possible at all. Furthermore, backup system capacity
is wasted since the replicated data is inconsistent and unusable. It
will only take one incident for it to become apparent that hardware
replication is not cost-effective and does not enable the highest levels
of service availability with minimal data loss. While suitable for some
tasks, hardware data replication is inadequate for supporting business
continuity of mission-critical applications.

Conversely, software-based transactional replication suffers from
none of the issues which afflict hardware replication, including:

•	 distances are not limited;
•	 source and target databases are consistent;
•	 recovery is simple, fast, and repeatable;
•	 continuously available active/active architectures are

supported;
•	 zero data loss is provided when running in synchronous

mode;
•	 backup databases can be used for productive work;
•	 source and target systems can be completely heterogeneous.
For mission-critical applications, the highest levels of service

availability and protection against data loss is required. A business
continuity architecture built on software-based transactional data
replication is the only viable solution to meet this requirement.

Shadowbase Software Data Replication
The Shadowbase product suite from Gravic, Inc. provides

the full range of software data replication features to satisfy the
most demanding IT business continuity and other replication
requirements, including:

•	 active/active continuously available business continuity
architectures to eliminate unplanned downtime;

•	 synchronous replication technology for zero data loss (ZDL)
when disasters occur;

•	 zero downtime migration (ZDM) capability to eliminate
planned downtime for upgrades and migrations;

•	 data and application integration between heterogeneous
systems.

The Gravic white paper, Choosing a Business Continuity Solution
to Meet Your Availability Requirements contains more information
on the subject of hardware versus software data replication, and
the requirements to consider in choosing the best solution to meet
your business continuity needs.

•	 The backup disk is highly inconsistent due to missing data
not yet replicated, and is consequently not usable for query/
reporting or other functions.

•	 The primary and backup systems must generally use identical
database hardware and software. All upgrades must be
simultaneously applied to all hardware components, thereby
increasing the risk that a fault in one component will affect all
components.

•	 The source and target systems must be homogeneous, and
integration of diverse systems, applications, and data is not
possible.

•	 Recovery from a failure is a complex and lengthy task,
requiring data “fix-up” on the backup disk, which leads to
long recovery times and service unavailability.

•	 A significant amount of communication bandwidth is
required since whole disk blocks rather than individual rows
are typically replicated.

•	 Data corruption of the source database is replicated to the
target, perhaps preventing it from being opened for recovery.

•	 Distance between disks is physically limited (typically about
100 km), which increases the likelihood that a local area
incident could affect both disks and prevent recovery.

•	 If synchronous replication is used, data can still be lost when
a failure occurs due to the cache flushing issue.

By contrast, none of these issues affect software replication:
•	 Primary and backup databases are consistent and maintain

transactional and referential integrity. Software replication
therefore enables active/active systems which deliver
continuous service availability.

•	 Because software replication maintains database consistency,
backup systems can be used for query/reporting and other
online activities, while replication is taking place.

•	 Primary and backup systems can be completely different
(heterogeneous). The platforms, operating systems, database
software, and database structure can all be different. The data
replication engine takes care of managing the necessary data
transformations.

•	 Software replication can be used for the integration of
different applications and data, enabling the implementation
of new business services.

•	 Because the backup database is transactionally consistent and
ready for use at any time, there is no need for a complex takeover
process (database “fix-up” to bring it into a consistent and usable
state), and recovery times as low as sub-seconds are possible.

•	 In an active/active architecture many users will not see an
outage, and recovery is simply a matter of re-routing users
from a failed node to an active system.

•	 Because only row change data is sent between systems, much
less communications bandwidth is required for software
replication.

•	 Software replication replicates changes described by a source
transaction log. Such changes are executed completely
independently on target systems, thereby avoiding the
mirroring of corruption from the source database to the
target database.

•	 Software replication has no physical distance limits between
nodes, which can be positioned sufficiently far apart to ensure
continued service, including an outage incident that affects a
wide area.

•	 Synchronous software replication guarantees that all data
associated with committed transactions is replicated, and
hence no data will be lost in the event of failure.

Keith B. Evans works on Shadowbase business development and product
management for Shadowbase synchronous replication products, a
significant and unique differentiating technology. Asynchronous data
replication suffers from certain limitations such as data loss when outages
occur, and data collisions in an active/active architecture. Synchronous
replication removes these limitations, resulting in zero data loss when
outages occur, and no possibility of data collisions in an active/active
environment. Shadowbase synchronous replication can therefore be used
for the most demanding of mission-critical applications, where the costs
associated with any amount of downtime or lost data cannot be tolerated.
For more information and the availability of Shadowbase synchronous
replication, please email sbproductmanagement@gravic.com.

