
“Achieving Century Uptimes”
An Informational Series on Enterprise

Computing

As Seen in The Connection, A Connect Publication
December 2006 – Present

About the Authors:

Dr. Bill Highleyman, Paul J. Holenstein, and Dr. Bruce Holenstein, have a
combined experience of over 90 years in the implementation of fault-tolerant,
highly available computing systems. This experience ranges from the early days of
custom redundant systems to today’s fault-tolerant offerings from HP (NonStop)
and Stratus.

1

Gravic, Inc.
Shadowbase Products Group

 17 General Warren Blvd.
Malvern, PA 19355

610-647-6250
www.ShadowbaseSoftware.com

Achieving Century Uptimes
Part 20: Is Your Application Active/Active Ready?

January/February 2010

Dr. Bill Highleyman
Paul J. Holenstein

Dr. Bruce D. Holenstein

Active/active systems achieve their scalability and continuous availability by distributing
application and database copies across an application network. The database copies are kept in
synchronism via data replication, and in the most flexible architectures a transaction can be
directed to any node in the network. Applications can be scaled and load-balanced easily by
simply adding nodes or redistributing traffic. Should a node fail, failover is fast and reliable since
all that needs to be done is to route all transactions to surviving nodes.

However, distributing applications and database copies can result in serious problems that
must be considered. In this article, we review many of these problems. Some are caused by the
distribution itself, while others are related to characteristics of the asynchronous or synchronous
data replication technology used.1

Asynchronous Replication

Asynchronous replication synchronizes database copies by replicating source-database
changes to a target database independent of the application processing. Though asynchronous
replication is totally transparent to an application and has no effect on its performance, it brings
with it a set of problems that must be considered. Many of these have to do with replication
latency, which is the delay from when a change is made to the source system to when that
change is applied to the target system.

Data Collisions

It is quite possible that the same data object might be modified by two different nodes at
about the same time – that is, within the replication-latency interval. In this case, the different
values will be replicated to the opposite system, thus corrupting the database.

If data collisions occur, they must be detected and resolved. There are application
architectures that can be used to avoid collisions, such as database partitioning with each node
owning a partition, as well as application architectures that automatically resolve data collisions.
Replicating operations instead of rows can also be effective in some cases.

1 Further detail on topics discussed in this article, including active/active systems, asynchronous replication, synchronous
replication, replication latency, application latency, data collisions, and coordinated commits may be found in the three-book series,
Breaking the Availability Barrier, by W. Highleyman, P. Holenstein, and B. Holenstein. In Volume I, see Chapter 3, Asynchronous
Replication and Chapter 4, Synchronous Replication. In Volume II, see Chapter 4, Active/Active Topologies, and Chapter 8,
Eliminating Planned Outages with Zero Downtime Migration. See Appendix 4, A Consultant’s Critique, in Volume III. Also see Parts
15 and 16 of The Connection’s Achieving Century Uptime series by the above authors, Zero-Downtime Migrations: Eliminating
Planned Downtime (March/April 2009) and Zero-Downtime Migrations for Active/Backup Configurations (May/June 2009)

2

Data Loss

Should a node fail, any data in the replication pipeline may not make it to the target system

and may be lost. The faster the replication engine, the smaller the replication latency, and the less
data will be lost. If no data loss is acceptable, synchronous replication, described later, should be
used.

Minimizing Replication Latency

Both data collisions and data loss are minimized if replication latency is small. This is a

characteristic of the replication engine and should be considered in the choice of an appropriate
engine. For example, disk or other queuing points in a replication engine will increase its
replication latency.

Replicating Read-Only Locks

Data-replication engines do not typically replicate read-only locks, and normally this is

unnecessary. However, in some cases, read-only lock replication may be required.

An example is an intelligent locking protocol (ILP). An ILP specifies the locking order so

that deadlocks in a single-node application database can be avoided. For instance, it may be
required that the application lock an invoice header before modifying any of its detail rows. The
header lock is read-only and will not be replicated to the other nodes in the application network,
which are consequently free to also acquire this lock.

The problem can be corrected by changing the read lock to a null update lock. Even though

the header will not be updated, the lock will be replicated and will prevent other nodes from
acquiring that lock.

Referential Integrity

It is important that changes made to the source system be made in the same order at the target

system, at least to the extent that the changes are related. High-speed database replicators often
use multiple replication threads, resulting in changes being received potentially out of order at
the target system. These changes must be properly reordered before applying them to the target
database. This is a responsibility of the replication engine.

Synchronous Replication

Synchronous replication ensures that either all changes made by an application’s transaction

to a local database copy are made to all database copies or that none are. Synchronous replication
is not transparent to an application. An application must not only wait while its local database
changes are made but must also wait for all changes to be completed across the application
network, and transaction completion is therefore delayed. This application delay is known as
application latency.

3

Application Latency

Application latency can cause several problems in an application:

• To maintain overall aggregate transaction throughput in the presence of slower
individual transactions, the number of simultaneous transactions must be increased by
spawning additional application threads or application processes. The application
must therefore be scalable.

• Since there may be more transactions active at any one time, the transaction limit of
the nodes may have to be increased.

• Locks will be held longer as transaction life increases. This may increase the number
of application lock waits or even deadlocks, thus slowing down transaction
processing even further.

• Data hot spots - data objects that are frequently locked by applications - will become
hotter still as locks on it are held longer.

Distributed Deadlocks

Locks must be replicated by the replication engine to all nodes. It is possible that applications

in two different nodes will acquire a lock on their local copy of the same data object within the
replication interval. Neither application will then be able to acquire its remote lock, and a
distributed deadlock occurs.

The application may not have been built to accommodate this condition since it would not

have happened in a single-node system. The correction is to ensure that at least one of the
application copies will time out and try again, allowing the other to complete. Alternatively,
global locks held by a lock master may be used.

Transaction Timeouts

Because transactions are delayed by a number of factors, as described above, transaction

timeout parameters should be reviewed to ensure that transactions can tolerate the longer
execution times.

Additional Aborts

In a distributed system, there are many more ways for a transaction to run into problems on

any one of the nodes on which it must commit. This presents the potential for an increased
transaction abort rate. Abort handling should be reviewed to make sure that it is robust and that
the application takes appropriate action when it gets an abort response to a transaction commit
request.

Disaster Tolerance

Because application latency is determined primarily by communication-channel latency (the

amount of time that it takes for a message to propagate over the communication channel),
synchronous replication often limits the distance that nodes can be separated – typically to a few

4

kilometers. Therefore, the degree of disaster tolerance is limited. The use of coordinated commits
to achieve synchronous replication can avoid this problem. With coordinated commits, changes
are replicated asynchronously; and an application waits only at commit time, not at every update.

General Considerations

A class of problems arises when applications written for a single node are subsequently

distributed across multiple nodes. They include a host of important considerations spanning
topics such as the use of common resources and application monitoring and control.

Global Resources

A variety of resources may cause confusion or even result in database corruption when

distributed copies of an application must use them as common resources. If the resource is disk-
resident, this may not be a problem since all distributed application copies have access to a
synchronized copy of the resource. However, if the resource is memory-resident, applications in
one node will not be aware of the state of the resource in other nodes.

Locks

If an application in one node uses an ILP to acquire a lock on its copy of a database item,

applications in other nodes will not necessarily be aware of the lock and may themselves acquire
their own local lock on their copy of the database item, resulting in a database collision that may
lead to corruption as they each independently modify a subordinate item.

One solution is to modify the applications to use a global lock that is accessible by all

applications. This lock might be resident on disk, or it may be held by a master node in the
application network.

Unique Number Generators

Unique number generators are often used to produce identifiers such as invoice or customer

numbers. If each node has its own unique number generator, then the numbers may not be unique
across the system since each node may create the same numbers as the other nodes.

This can be corrected by assigning number ranges to each node, by using modulo numbers

(for instance, in a two-node system, one node uses even numbers; and the other uses odd
numbers), or by appending a node ID to the number. Alternatively, one of the nodes can be
tasked with generating numbers for use by the other nodes.

Memory-Resident Context

There are applications that maintain context between related transactions in memory. This

context will not be replicated by a typical data-replication engine.

For instance, an application may send requests to a remote system asynchronously over one

connection; and the response is returned over a separate connection. Local memory-resident

5

context identifies the request originator to which the response should be returned. However, in a
distributed system, the response may go to a different node that knows nothing of the original
request and does not know how to return the response.

In this case, the application could be modified to store the connection context on disk, to use

memory-to-memory replication to replicate the connection context to all systems, or to include
the originator’s identification in the request.

Batch Runs

The application may, in some cases, initiate batch runs when certain conditions are met, such

as a certain transaction count. It is important to ensure that such a batch run will not be
duplicated on all nodes.

Transaction Distribution

In a single node system, it is clear which node should receive a transaction. However, in a

multinode system, transactions must somehow be distributed between the nodes. Several
techniques exist for doing this, including:

• user partitioning, in which users are assigned to a particular node according to some

algorithm (locality, account-number range, etc.).
• intelligent routers, which direct a transaction according to nodal load or to the content of

the transaction.
• round-robin distribution, in which a client rotates through the nodes with successive

transactions.

Split-Brain Mode

The application network depends upon a reliable replication network to keep its database

copies synchronized. Should a replication link fail, the databases on either side of the link will
begin to diverge. The nodes using these databases may provide different results for the same
transaction. This condition is called split-brain mode. When the network is restored, the database
copies must be reconciled; and there probably will be data collisions which must be identified
and resolved.

In some applications, split-brain mode is unacceptable. To avoid this, the failed network

condition must be detected and typically one of the nodes shut down until the replication
network is back in operation.

Application Monitoring and Control

With applications distributed over multiple nodes, monitoring and control becomes more

complex. The proper behavior of each application copy must be monitored and verified. There
must be means to distribute new versions of applications to all nodes and to modify application
configurations online. Zero-downtime migration (ZDM) methods may need to be employed to

6

7

avoid application outages as the new versions of the application or environment are brought
online. Application management may well have to be integrated into a network management
tool.

Test, Test, Test

After reviewing an application and possibly making any appropriate modifications, it must be

thoroughly tested before putting it into service. This should include single system fault testing,
network failure recovery, and node failures with the remaining nodes successfully taking over
the load.

If application modification is not feasible, an alternate approach is to run the application in a
“sizzling-hot” standby mode. In this configuration, all transactions are routed to a single node in
an otherwise active/active system. The problems of distributing an application are avoided, and
the fast recovery time of an active/active system is achieved.

Summary

Preparing an application for active/active deployment may be a lot of work; but the resultant

improvement in recovery time, reduction in data loss, and the peace of mind knowing that
failover will always work will, in many cases, be worth the effort.

The wave of the future is distributed applications. Perhaps we should become more cognizant

of these issues as we develop applications for the future and ensure that they will run in a
distributed environment if required.

	Asynchronous Replication
	Data Collisions
	Data Loss
	Minimizing Replication Latency
	Replicating Read-Only Locks
	Referential Integrity

	Synchronous Replication
	Application Latency
	Distributed Deadlocks
	Transaction Timeouts
	Additional Aborts
	Disaster Tolerance

	General Considerations
	Global Resources
	Locks
	Unique Number Generators

	Memory-Resident Context
	Batch Runs
	Transaction Distribution
	Split-Brain Mode
	Application Monitoring and Control

	Test, Test, Test
	Summary

