
“Achieving Century Uptimes”
An Informational Series on Enterprise

Computing

As Seen in The Connection, An ITUG Publication
December 2006 – Present

About the Authors:

Dr. Bill Highleyman, Paul J. Holenstein, and Dr. Bruce Holenstein, have a
combined experience of over 90 years in the implementation of fault-tolerant,
highly available computing systems. This experience ranges from the early days of
custom redundant systems to today’s fault-tolerant offerings from HP (NonStop)
and Stratus.

Gravic, Inc.
Shadowbase Products Group

 17 General Warren Blvd.
Malvern, PA 19355

610-647-6250
www.ShadowbaseSoftware.com

Achieving Century Uptimes
Part 3: Avoiding Data Collisions

March/April 2007

Dr. Bill Highleyman
Dr. Bruce Holenstein

Paul J. Holenstein

The Data Collision Problem

The most common way to keep database copies synchronized in an active/active
network is via asynchronous replication. With this technique, changes made to one
database copy are queued for replication to the other database copies in the application
network. It is the job of data replication engines to propagate updates from these queues
to the other database copies and to apply them.

Asynchronous data replication engines are decoupled from the application. That is,
they replicate independently from the source application. There is therefore a delay from
when an application updates one database copy to the time that the data replication
engine applies that update to the other copies. This delay is known as the replication
latency of the data replication engine.

A critical issue with asynchronous replication is
data collisions. Data collisions come about should two
or more users update the same row at substantially the
same time in different database copies. If this time
difference is within the data replication latency, each
user is unaware of the updates made by the other users.
Each of their updates will be replicated to the other
database copies and will subsequently overwrite the
original updates. As a result, the database copies will all be different; and all are wrong.

database
copy 1

X

update
row A

replication
database

copy 1

update
row A

Data Collision

Of course, data collisions can be avoided if synchronous replication is used since all
data items across the network are locked before any are updated. Thus, they will either all
receive the same update or none will. However, there are ways to structure an
active/active system which uses asynchronous replication to avoid data collisions. Some
of these techniques are described in this article.

If collisions cannot be avoided, they must be detected and resolved. Data collision
detection and resolution are discussed in our next article.1

1 Data collision avoidance, detection, and resolution are discussed in detail in the book “Breaking the
Availability Barrier: Survivable Systems for Enterprise Computing,” by Dr. Bill Highleyman, Paul J.
Holenstein, and Dr. Bruce Holenstein, AuthorHouse; 2004.

1

Avoiding Data Collisions

In some applications, collisions are simply not possible. In some other applications,
data collisions can be ignored.

However, if data collisions are possible, they can be avoided at the data level by
partitioning the database; or they can be avoided at the system architecture level by
declaring a master node

Application

Some applications are immune to data collisions. Either they cannot occur, or they
can be tolerated.

Single Entity Instance

In some applications, there can be only one physical entity instance that is represented
by a collection of data items in the database. Therefore, there can only be one transaction
outstanding at any one time; and collisions are not possible. A good example of this type
of application is gift cards.

Gift cards are identified by a unique number. There is only one physical instance of
each gift card, and they are not rechargeable; so there is no chance of a colliding
administrative action. When a gift card is used, the system which receives the transaction
authorizes the sale and replicates the new gift card amount to the other database copies in
the application network. The transaction response to the point-of-sale device allows it to
update the new gift card’s balance on the card’s magnetic stripe.

Since there is only one instance of the gift card, it is impossible for there to be
simultaneous transactions. Thus, data collisions are not possible (short of the fraudulent
use of gift card copies).2

Insert Only

If all database operations are simple unique inserts, there can be no data collisions.
An example of such an application is the recording of call detail records (CDRs) by
telephone companies for later billing purposes.

2 When payment cards first were introduced some three decades ago, there was often no central
authorization system. The card’s magnetic stripe held all of the data, and the transaction was authorized
based only on the data recorded on the card. It was then found that thieves could easily buy magnetic stripe
readers and writers and forge the magnetic stripe on stolen cards. As a consequence, they could use them
multiple times without detection.

2

Collision Tolerance

There are some applications in which collisions will occur but can be tolerated. For
example, those which are simply accumulating statistical information for later data
mining may be deemed to be tolerant of collisions if these collisions will have little effect
on the statistical results. Other applications may become resynchronized at a later time
due to normal transaction activity, and this period of database divergence may not be
considered a problem.

In cases such as these, though data collisions can occur, no collision detection or
resolution facilities are necessary.

Partitioning

In many applications, it is possible to partition the database so that all updates made
to a particular partition are made to a specific database copy. This precludes the
possibility of data collisions. There are several strategies for database partitioning.

User Locality

The simplest form of partitioning is a natural partitioning based on user locality. In
these applications, a specific community of users will only update a specific set of data
items. If the users who are members of a specific community all use the same database
copy, there will be no collisions.

This might be the case, for instance, for a sales tracking application in a regional sales
office. All data entered for a particular salesperson would always be entered by the same
sales office into the database copy to which it is assigned.

Often, applications such as this take advantage of data locality by having one of the
nodes of the active/active network in close proximity to each community of users. This
arrangement promotes full capacity use and maximizes performance by minimizing the
communication delays during transaction execution since users are generally local to
their assigned database partition.

Data Content

Perhaps the most common form of
partitioning is by data content. In this
architecture, the database is partitioned
according to some piece of data
common to each data item. Each
partition is “owned” by a specific node
(the partition’s “primary” node), and
all updates for a partition are always
routed to its primary node.

part A

part B'

database
copy A

replication part A'

part B

database
copy B

Partitioning

updates updates

3

For instance, the database might be partitioned by customer account number. Account
numbers beginning with 0 through 4 might be resident in one database copy (let us call
this partition A), and account numbers beginning with 5 through 9 might be resident in
another database copy (partition B). Partition A is owned by node A, and partition B is
owned by node B.

In this case, transaction distribution could be done in two different ways. One way is
for any transaction to be received by any node. If node A receives a transaction that will
update partition A, it will process that transaction. However, if node A receives a
transaction that will update partition B, it will send that transaction over the network to
node B for processing.

Alternatively, intelligent routers which can be driven by the data content of messages
can be used to route transactions to the desired node.

With this strategy, it is straightforward to rebalance the system should the loads on
the nodes become unbalanced. For instance, in the example given above, if node A
(which is handling accounts beginning with 0 through 4) should become more heavily
loaded than node B (which is handling accounts beginning with 5 through 9), it may be
desirable to “move” those accounts beginning with 4 from node A to node B. This can be
done by simply sending new routing tables to the nodes or routers, as appropriate, which
will direct that all transactions for accounts beginning with 4 now be routed to node B.

This partitioning scheme loses the advantage of data locality since transactions will
generally be routed over the network and will accrue a round-trip communication delay,
thus affecting response-time performance. To the extent that there is locality of the data
partitions to the users most likely to update them, the performance penalty will be
minimized.

There is a further complexity if a transaction can update data in multiple partitions. In
this case, the node processing the transaction must either include all partitions in the
scope of the transaction (thus incurring a round-trip communication delay for each action,
such as an update) or break the transaction into subtransactions, one for each partition. In
the latter case, it will usually be necessary for the database manager to have the capability
to handle subtransactions as it is generally not possible for the application to manage
several subtransactions and still guarantee transaction atomicity (that is, either all
subtransactions are committed or none are).

Node Ownership

An alternate to partitioning by data content is partitioning by node ownership. In this
technique, each data item (for instance, a row or a record) is “owned” by a particular
node. This is implemented by including in the key for the data item the identification of
the node that owns that data item.

4

The node identification is generally added when each data item is created (that is,
when the data item is inserted into the database). The node on which the insert occurs
notes its ownership of this data item by adding its node id to the data item’s key.
Thereafter, any updates for that data item must be made to the database copy controlled
by the owning node.

This is a form of data partitioning by data content (the node id in the key) and carries
most of the same advantages and disadvantages of data content routing, as described
above. However, load rebalancing is not so simple since the keys of the data items whose
ownership is to be relocated must be modified by replacing the node id field in the key
with the id of the new owning node.

How Many Database Copies?

With partitioning, there need not be more than two copies of the entire database in the
application network. For instance, if there are four nodes in the network, the database can
be partitioned into four partitions. Each node can be the primary node for one partition
and can be the backup node for another partition. Therefore, each node will carry one-
half of the database. Thus, among the four nodes, there are only two copies of the
database.

As an extension to this, there can be multiple copies of the database in the application
network. This provides the opportunity to achieve a compromise between cost and
availability (and performance as well if more effective data locality is realized).

Architecture

An active/active system can be structured to avoid data collisions by declaring one
node to be the master node. All updates must be made to that node, and it will replicate
database changes to all of the other (slave) nodes, including the node that originated the
change. Since all updates are made to only one database copy – the master node’s copy –
there can be no data collisions.

master
node

slave
node

slave
node

replication

updateupdate

Master/Slave Architecture

Should the master node fail, any one of the
slave nodes can be promoted to be a master node
until the original master node is returned to service.
This is simply done by notifying the new master
node that it is to handle updates and by notifying all
of the other surviving nodes of the new master so
that they can route their updates to it.

One downside of this technique is the effect of
communication latency. Since transactions must be
sent across the network, they will suffer a delay due
to the time that it takes for each interaction to move
across the network to reach the master node and for

5

the response to be returned.

There are two ways in which transactions can be handled. In one case, the originating
node owns the transaction and makes every update to the master node across the network.
In this case, each update will incur a round-trip communication latency.

The other technique is to send the entire transaction to the master node so that it can
be executed locally at that node. In this case, there is only one round-trip communication
latency time – that required to send the transaction and to receive its response.

Note that this master/slave configuration can be used either for symmetric or for
asymmetric capacity expansion. In a symmetric architecture, all nodes are performing the
same function except that the slaves must send updates to the master node.

In an asymmetric architecture, the nodes are providing different functions. A common
use for an asymmetric architecture is query processing. In this case, the slave nodes
provide support for complex queries. The master node provides transaction processing
functions and sends all updates to the query nodes to maintain query result consistency.

Data Collision Resolution

If data collisions under asynchronous replication cannot be avoided, they must be
detected and resolved. There are many automatic methods for doing this. Data collision
detection and resolution will be described in our next article.

6

	ITUG Availability Corner- Achieving Century Uptimes.pdf
	Achieving Century Uptimes Part 3 (Avoiding Data Collisions)
	Avoiding Data Collisions
	Application
	Single Entity Instance
	Insert Only
	Collision Tolerance

	Partitioning
	User Locality
	Data Content
	Node Ownership
	How Many Database Copies?

	Architecture
	Data Collision Resolution

