
July/
August
2011

10

The replication of data between
geographically dispersed databases
has many purposes. It is used for

high availability to keep standby systems
synchronized and for continuous availability
to synchronize multiple active systems
cooperating in a common application.1 Data
warehouses and data marts depend upon data
replication to keep their data stores current.
Legacy applications are integrated in real-time
using efficient, event-driven processing by
feeding the database changes to a downstream
application as they occur. Data locality and
accessibility are improved by allowing an
application to maintain a local, synchronized
copy of critical data generated by another
application.

Transaction-oriented file and database
management systems usually provide a
change queue that holds all of the changes
that have been made to the database. A
replication engine follows the change
queue and sends the changes to a target
system to keep the target system’s database

synchronized with the source.
Most database management systems do not make

the changes within a transaction available in the change
queue until the transaction commits. In these systems the
replication engine must wait for a transaction to commit
before it begins to send its updates to the target system. We
call this serial replication since transactions are sent to the
target database one at a time.

Some database managers periodically send the change
queue file to the target system. In these systems, no changes
are typically available to the target database (that is, they are
not materialized) until the entire queue file is received at the
target system and closed. Then only committed transactions
are available. Even if the database management system allows
the change queue to be replicated before the commit occurs,
the data is generally queued on the target system until a
commit arrives for one of the transactions in the change

queue. The committed transaction is then serially applied.
HP NonStop systems implement the change queue as the

TMF Audit Trail for the Enscribe, SQL/MP, and SQL/MX
file systems. The Audit Trail is different from other database
management systems’ change queues in that it makes changes
immediately available for transmission as well as application
into the target environment. Therefore, individual changes
are replicated immediately and committed as soon as their
transactions are committed at the source database. We call
this concurrent replication since the replication of multiple,
even related, transactions are in progress at any given time.

Concurrent replication has many efficiency advantages
over serial replication. These advantages are described in this
paper. The highly efficient technique of concurrent replication
is commercially available only on NonStop systems because
of the unique structure of and access to the TMF Audit
Trail coupled with replication-engine extensions that allow
the replication engine to replay the target transaction mix
concurrently with source transaction processing. It is the
specialized nature of the NonStop Audit Trail that allows data
replication to perform as if on steroids.2,3

Data Replication 101

Replication Engine Architecture
Before we dive into serial and concurrent replication

issues, it is important to understand the fundamentals of
data replication.

Data replication is conceptually simple. It depends upon

Only On NonStop
Data Replication on Steroids
John R. Hoffmann

Manager of NonStop Development
Shadowbase Product Group

1 What is Active/Active?, Availability Digest; October 2006.
2 We call this “data replication on steroids” because concurrent replication provides great performance enhancements, though without the negative side effects
that accompany the medical use of steroids.
3 In some database systems, specialized event capture routines are added to the database to detect and replicate I/O events as they occur. The most common
technique uses database trigger capture or a similar method. Triggers are a useful approach as they are granted access to the event data as it occurs rather than
having to await a commit. However, they extend the source application’s transaction path length because trigger work is typically performed under the source
transaction. Triggers are generally used for specialized and localized replication environments since they typically require very high-speed interconnects so as
to minimize the impact on the source application processing.

Mr. Hoffmann, Manager
of NonStop Development,
leads development for
the Shadowbase Products
Group on NonStop. John’s
experience with NonStop
systems spans more
than 30 years and began
early in his career on the
original Tandem NonStop
System. John specializes in
developing highly available,
fault tolerant, real-time
systems. He is a member of
Gravic Labs, the company’s
intellectual property group,
and is active in the fields
of data replication and
synchronization. He is a
co-author on upcoming
volumes in the series:
Breaking the Availability
Barrier. He received his BS
in Honors Mathematics from
McGill University, Canada.

The
Connection 11

www.connect-community.org

being able to track changes to a source database via some
sort of change queue. The change queue may be created
by the database manager, by the application, or via other
techniques such as database triggers. In NonStop systems,
the change queue is the TMF Audit Trail, which records
every change made to the source database.

As shown in Figure 1, the replication engine provides an
Extractor process that follows the change queue and reads
each change that was made to the source database. Changes
are sent over a communication channel to an Applier
process that applies the changes to the target database.

Depending upon the nature of the change queue,
a “change” may be an entire transaction (as in most
database management systems) or a single update within a
transaction (as in the NonStop TMF Audit Trail).

Since changes occur at the source database and are
independently applied to the target database after they were
made to the source database, this method of replication
is called asynchronous replication.4 The target database
lags the source database by a short time. This delay is
called replication latency. Another form of replication,
synchronous replication, avoids replication latency but has
other limitations. Synchronous replication is not considered
in this paper.5

Database Consistency
In many applications, the target database must be

available for use during the replication process. If it is the
database of a standby system, it may be used for queries
and reporting. If it is a database in an active/active system,
it must be able to provide read/write activity to local
applications while at the same time supporting updates by
one or more replication engines.

Therefore, the target database must always be in a
consistent state. A consistent relational database must
satisfy the following constraints:6

•	 Primary Key: The rows in every table in the
database must each have a unique primary key.

•	 Referential Integrity: Every child row must have
a parent row. That is, every foreign key in a row
must be the primary key of an existing row.

•	 Data Constraints: User-defined relationships
between rows or columns in the same or different
tables must be correct.

•	 Data Validity: The value of every data field must
reflect the latest update for that field.

In transaction processing systems, related updates
are included within the scope of a transaction. The

ACID7 properties of a transaction guarantee that the
source database is left in a consistent state following the
commit of each transaction. It is the responsibility of the
transactional replication engine to ensure that this same
consistency is enforced at the target database.

Natural Flow
Consistency is achieved if the natural flow of the source

system’s update sequence is preserved. In other words,
the sequence of updates made to the target database is the
same as that sequence at the source database. If updates are
applied in random order, older updates might overwrite
newer updates, child rows may exist without parent rows,
and so on. The database contents would be wrong and in
some cases unusable. In short, the target database would
not be a consistent copy of the source database.

The simple replication engine of Figure 1 guarantees
natural flow and a consistent target database because
changes are sent over the replication channel to the target
database in the same order as they were applied to the
source database. Therefore, changes are applied to the target
database in the same order, thus guaranteeing consistency.

Within a transaction-processing system, there are two
types of natural flow to be considered – intertransaction
natural flow and intratransaction natural flow.

Intertransaction Natural Flow
Intertransaction natural flow is the more important

of the two. Intertransaction natural flow requires that
transactions are committed in the same order on the target
system as they were committed on the source system.

Data being modified within the scope of a transaction
is generally not available to applications (except for the
case of “dirty reads”). However, once the transaction is
committed, the data affected by the transaction is now
available to the target applications.

If transactions are allowed to commit out of order, the
consistency constraints are easily violated. For instance, a
newer update may be overwritten by an older update. A
child row may be inserted before its parent row is inserted.
The sum of a field in a set of rows may not equal the
accumulated value contained in another row.8

Intratransaction Natural Flow
Since the results of updates within the scope of a

transaction are not viewable to applications until the
transaction commits, the violation of natural flow order
of a specific transaction’s updates is often not a problem.

4 Chapter 3, Asynchronous Replication, Breaking the Availability Barrier: Survivable Systems for Enterprise Computing, AuthorHouse; 2004.
5 Chapter 4, Synchronous Replication, Breaking the Availability Barrier: Survivable Systems for Enterprise Computing, AuthorHouse; 2004.
6 Holenstein, Paul J., Holenstein, Bruce D., and Highleyman, Wilbur H., Referential integrity, consistency, and completeness loading of databases, U.S. Patent
7,949,640: May 24, 2011.
7 Atomic – all updates are made, or none are. Consistent – each transaction leaves the database in a consistent state. Independent – the execution of a transaction is
unaffected by other transactions being simultaneously executed. Durable – the results of a transaction survive any subsequent fault. For additional information, see
J. Gray and A. Reuter, Transaction Processing Concepts and Techniques, Morgan Kaufmann; 1993.
8 This is not third-normal form but is often implemented for efficiency reasons.
9 In NonStop systems, changes to a single file or table partition are always handled by the same DP2 disk process and are recorded in the proper order in the
Audit Trail. However, changes to file or table partitions handled by different DP2 processes will be written to the Audit Trail in an indeterminate order. Thus,
intratransaction referential integrity is generally not available on NonStop systems except when the related I/O events affect data in the same partition, unless some
form of sequence field is added by the application; and the replication engine reorders events into this sequence before applying them to the target database.

July/
August
2011

12
However, there are some special cases in which the
violation of natural flow within a transaction could lead
to the contamination of the database. For instance, if a
transaction makes multiple updates to the same field, and
if the updates are not applied to the target database in the
proper order, the data field may be left with an older value.

If the target database enforces referential integrity,
but the source database does not, transactions that have
completed successfully on the source database may be
aborted on the target database.9

Serial versus Concurrent Replication
Today’s asynchronous replication technologies

encompass three general types of replication:
Hardware replication, which is performed at the

database system level by replicating disk blocks. These
replication products are not transaction-oriented and are
not considered further.

Serial software replication, in which all updates within
a transaction are held in the change queue and are not
available to the replication engine until commit time.

Concurrent software replication, in which updates
within a transaction as well as the transaction commit
are available to the replication engine as soon as they are
applied to the source database.

Serial Replication
With serial replication, a transaction is typically not

visible to the replication engine until it is committed at the
source database. The entire transaction is then accessible
in the change queue and is replicated to the target system.

Only one transaction is actively being replicated and
applied to the target database at any given time. The
replication of all data within a transaction must wait until
all previously committed transactions are replicated.
Transactions are applied in the proper order since the
commits are received from the change queue in the order
they were committed at the source.

Most database management systems impose serial
replication on the replication facility, since the database
changes are not available until the transaction is committed.

Concurrent Replication
HP NonStop systems support concurrent replication.

When a source database update is made, TMF enters
it into the Audit Trail, from where it is immediately
accessible by the replication engine. Concurrent
replication reads updates as they become available in the
Audit Trail and immediately transmits and applies them to
the target database.

Therefore, when the target system receives the
source’s commit for a transaction that is being replayed
into the target database, the transaction’s updates were
already applied to the target database under a target
transaction that was begun upon the receipt of the

first update or upon the receipt of an explicit begin-
transaction command. All that is necessary is to commit
the target transaction. Transactions are committed in
natural flow order because the commits are applied to
the target database in natural flow order. Consequently,
intertransaction natural flow is ensured.

As opposed to serial replication, the replication
engine typically has many transactions in progress at any
one time. The transaction mix at the target matches the
transaction mix that originally occurred at the source,
offset by the replication latency time lag. This mix has
the desirable property of having the target database go
through the same simultaneous data changes as the source
did, offset by the replication lag time.

Comparing Serial and Concurrent Replication
Both techniques have strengths and weaknesses. An

advantage of serial replication is that aborted transactions
have no impact on the target database. They are simply not
applied. In addition, serial replication is simpler to implement
since only one transaction is being actively replicated at a
time. However, since the replication and application of the
data, whether serial or concurrent, are performed by today’s
commercially available replication engines, concurrent
replication should pose no challenge for end users.

The Achilles’ heel of serial replication is its inability to
have more than one transaction at a time in progress. This
inability has four important negative impacts – increased
RPO (recovery point objective – the potential loss of
transactions should the source system fail), uneven loading
of the replication communication channel and the target
system, a negative impact from long-running transactions,
and the lack of extensibility. Concurrent replication solves
these problems.

Recovery Point Objective
With serial replication, the replication process typically

does not begin until the source system has committed
the transaction. At that point, all of the updates within
the scope of the transaction must be extracted from the
change queue,10 sent to the target system, and applied to
the target database. Therefore, the replication latency is the
time required to extract all of the updates from the source
system, send them to the target system, apply them to the
target database, and commit them.11

The latency time to replicate a transaction of any
size with concurrent replication is simply the time to
replicate the commit. The reason is that the events inside
that transaction were already replicated and applied
immediately after they occurred on the source.

This high degree of overlap substantially reduces RPO
when concurrent replication is used. For instance, if a
transaction has four updates, serial replication will cause
the target system to lag the source system by five event
replication times (four updates plus a commit). Concurrent

10 As noted earlier, some database engines do not even make events visible until they are committed; Oracle’s Log Miner is an example.
11 In some cases, vendors moved the change queue to the target system. By doing this move, the event replication time has been shortened by eliminating
communication time.

The
Connection 13

www.connect-community.org

replication will cause the target system to lag the source
system by only one event replication time (the commit).
This time lag represents the amount of data that might be
lost should the source system fail. Therefore, the RPO for
serial replication in this example will be about five times
greater than the RPO for concurrent replication.

Target System Loading
With serial replication, the replication load on the target

system comes in bursts. The replication channel is idle until
a transaction commits on the source system. At that point,
all of the updates and the commit are sent to the target
system as a complete transaction. The target system proceeds
from being idle to suddenly being busy applying all of these
updates, and then its replication activity disappears until the
next complete transaction is received.

With concurrent replication, replication activity follows
the natural flow of update activity at the source database.
Whenever an update or a commit is made at the source
database, it is also made at the target database. The database
update activity at the target system is substantially the same
as it is at the source system.

Thus, with concurrent replication, database I/O activity
is as smooth at the target system as it is at the source system,
and the same procedures used to tune the source system are
applicable to the target system. With serial replication, the
“bursty nature” of replication at the target system imposes
peak loads not seen at the source system, and totally different
tuning procedures are required.

The bursty nature of serial replication also impacts the
communication channel. Rather than imposing a fairly
smooth load on the replication communication channel,
serial replication communication comes in bursts, which
causes queuing at the communication channel.

The uneven loading imposed on both the communication
channel and the target system by serial replication further
increases the RPO penalty. To reduce this penalty, one must
significantly increase the communication channel capacity
and the CPU and disk capacity on the target system to
offset the loss of parallelism that concurrent replication
provides. This increase allows each event replication to be
completed faster, thus offsetting the cost of idle time on the
communication channel and at the target system.

Large Transactions
Many applications mix normal transaction activity and

batch processing. Normal transaction activity is characterized
by transactions with only a few updates each. Batch
processing often binds hundreds, thousands, or even millions
of updates within a single transaction.

This type of transaction causes a significant problem
when serial replication is used. When the batch transaction
commits, the replication channel is often committed to that
transaction until the hundreds or thousands or millions of
updates are sent and applied to the target database. During
that time, newly committed transactions must queue at

the source system and wait until the batch transaction has
committed before they are replicated.

For instance, assume that the replication channel handles
500 events per second (two milliseconds per event) to
transmit and apply events to the target database. A normal
transaction with four updates and a commit takes ten
milliseconds to replicate with serial replication. If a batch
transaction comes along with 100,000 updates, the replication
channel could be committed to that batch transaction for
200 seconds (over three minutes). Transactions that commit
after the commit of the batch transaction may be “stuck”
on the source side and delayed up to 200 seconds. This type
of transaction not only delays the state of the target system
substantially, but it significantly increases RPO (the amount
of data that is lost), since in this example, over three minutes
of transactions could be lost should the source system fail
during the batch replication.

Because concurrent replication follows the natural flow
of transactions from the source database, all 100,000 updates
were already sent and applied to the target database when
the batch transaction committed. It only takes one event
time – two milliseconds – to replicate the commit in order
to complete the replication of the batch transaction. Other
transactions that completed while the large batch transaction
was in progress are replicated at the same time as the
batch data. Large transactions have no negative impact on
replication when concurrent replication is used.

Extensibility
What if the volume of data that needs to be replicated

exceeds the capacity of the data replication channel? The

bottleneck could be the Extractor, the communication
channel, or the Applier. If the capacity of the replication
channel needs to be increased, the component representing
the bottleneck must be multithreaded so that two or
more components share the load, thus removing the
bottleneck, as shown in Figure 2. Depending upon where
the bottleneck is, one may have to configure two or more
Extractors, two or more communication channels, two or
more Appliers, or any combination of them.

With serial replication, multithreading has no value.
Only one transaction is in progress at a time. There is work
only for one Applier and one Extractor. Serial replication

12 Chapter 10, Referential Integrity, Breaking the Availability Barrier: Survivable Systems for Enterprise Computing, AuthorHouse; 2004.
13 NonStop systems have had this advantage for decades. It is only now that some database vendors are realizing the advantages of this capability.

The
Connection 33

www.connect-community.org

engines are not readily extensible without the possibility
of the Appliers colliding on data being applied, potentially
causing data collisions.

Concurrent replication takes advantage of multiple
replication threads since many transactions are being sent
and applied simultaneously. However, now changes flow
over multiple paths from the source database to the target
database. If nothing is done, there is no guarantee that
commits would arrive at the target database in the same
order that they occurred at the source database. The natural
flow of transactions would be disturbed, and the target
database may be left in an inconsistent state.

This problem is solved via intelligent Appliers. An
Applier must coordinate with its peers to ensure that it does
not commit a transaction for which it is responsible before
all prior transactions are committed.12

Summary
Concurrent replication has important advantages over

serial replication. It provides shorter RPOs and is not
impacted by long transactions that bring replication to a halt
in a serial replication engine. It produces the same database
activity profile on the target system, whereas serial replication
converts the natural flow of updates to a bursty profile.

Concurrent replication engines are extensible and scalable
by making them multithreaded, whereas serial replication
engines are bound by a single thread and are generally not
extensible without compromising target database integrity.

Concurrent replication depends upon the ability to
replicate the natural flow of transaction activity from the
source database to the target database. This ability requires
that source database updates are immediately available to
the replication engine once they are made. Most database
management systems do not make the updates within
the scope of a transaction available until the transaction
commits. Only NonStop systems make updates immediately
available in the Audit Trail to third-party ISV replication
engines. Only NonStop supports the many advantages
of concurrent replication. Only NonStop supports data
replication on steroids.13

If the benefits of concurrent replication are important to
your application environment, look for replication products
that allow you to exploit concurrent replication’s many
advantages.

Data Replication on Steroids
continued from pg.

